Skip to main content
Log in

Wavelets, generalized white noise and fractional integration: The synthesis of fractional Brownian motion

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We provide an almost sure convergent expansion of fractional Brownian motion in wavelets which decorrelates the high frequencies. Our approach generalizes Lévy's midpoint displacement technique which is used to generate Brownian motion. The low-frequency terms in the expansion involve an independent fractional Brownian motion evaluated at discrete times or, alternatively, partial sums of a stationary fractional ARIMA time series. The wavelets fill in the gaps and provide the necessary high frequency corrections. We also obtain a way of constructing an arbitrary number of non-Gaussian continuous time processes whose second order properties are the same as those of fractional Brownian motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abry, P., Flandrin, P. Taqqu, M.S., and Veitch, D. (1998). Wavelets for the analysis, estimation and synthesis of scaling data. In Park, K. and Willinger, W., Eds.,Self-Similar Network Traffic and Performance Evaluation, Wiley (Interscience Division), New York. To appear.

    Google Scholar 

  2. Abry, P. and Sellan, F. (1996). The wavelet-based synthesis for the fractional Brownian motion proposed by F. Sellan and Y. Meyer: Remarks and fast implementation,Appl. Comp. Harmonic Anal.,3(4), 377–383.

    Google Scholar 

  3. Abry, P. and Veitch, D. (1997). Wavelet analysis of long range dependent traffic,IEEE Trans. Info. Theor., To appear.

  4. Beran, J. (1994).Statistics for Long-Memory Processes, Chapman & Hall, New York.

    Google Scholar 

  5. Billingsley, P. (1968).Convergence of Probability Measures, John Wiley & Sons, New York.

    Google Scholar 

  6. Brockwell, P.J. and Davis, R.A. (1987).Time Series: Theory and Methods, Springer-Verlag, New York.

    Google Scholar 

  7. Chow, Y.S. and Teicher, H. (1988).Probability Theory: Independence, Interchangeability, Martingales, 2nd ed., Springer-Verlag, New York.

    Google Scholar 

  8. Cohen, A. and Ryan, R.D. (1995).Wavelets and Multiscale Signal Processing, Chapman & Hall, London.

    Google Scholar 

  9. Elliott. F.W. and Majda, A.J. (1994). A wavelet Monte Carlo method for turbulent diffusion with many spatial scales,J. Comp. Phys.,113(1), 82–111.

    Google Scholar 

  10. Flandrin, P. (1992). Wavelet analysis and synthesis of fractional Brownian motion,IEEE Trans. Info. Theor.,IT-38(2), 910–917.

    Google Scholar 

  11. Gelfand, I.M. and Shilov, G.E. (1964).Generalized Functions: Properties and Operations, vol. 1, Academic Press, New York.

    Google Scholar 

  12. Gelfand, I.M. and Vilenkin, N.Ya. (1964).Generalized Functions: Applications of Harmonic Analysis, vol.4, Academic Press, New York.

    Google Scholar 

  13. Heneghan, C., Lowen, S.B., and Teich, M.C. (1996). Two-dimensional fractional Brownian motion: wavelet analysis and synthesis,Proc. IEEE Southwest Symp. Image Anal. Interpretation, San Antonio.

  14. Hernández, E. and Weiss, G. (1996).A First Course on Wavelets, CRC Press, Boca Raton, FL.

    Google Scholar 

  15. Houdré, C. (1993). Wavelets, probability and statistics: some bridges, In Benedetto, J.J. and Frazier, M.W., Eds.,Wavelets: Mathematics and Applications, CRC Press, Boca Raton, FL, 361–394.

    Google Scholar 

  16. Jaffard, S. and Meyer, Y. (1996).Wavelet Methods for Pointwise Regularity and Local Oscillations of Functions, vol. 587, American Mathematical Society, Providence, RI.

    Google Scholar 

  17. Kwapień, S. and Woyczyński, N.A. (1992).Random Series and Stochastic Integrals: Single and Multiple, Birkhäuser, Boston.

    Google Scholar 

  18. Lau, W.-C., Erramilli, A., Wang, J.L., and Willinger, W. (1995). Self-similar traffic generation: The random midpoint displacement algorithm and its properties, InProc. ICC '95, Seattle, WA, 466–472.

  19. Leland, W.E., Taqqu, M.S., Willinger, W., and Wilson, D.V. (1994). On the self-similar nature of Ethernet traffic (Extended version),IEEE/ACM Trans. Networking,2, 1–15.

    Google Scholar 

  20. Lévy, P. (1948).Processus Stochastiques et Mouvement Brownien, Gauthier-Villars, Paris, 1st ed., 2nd éd., 1965.

    Google Scholar 

  21. Mandelbrot, B.B. (1982).The Fractal Geometry of Nature. Freeman, W.W., and Co., Eds., New York.

    Google Scholar 

  22. Mandelbrot, B.B. and Van Ness, J.W. (1968). Fractional Brownian motions, fractional noises and applications,SIAM Rev.,10, 422–437.

    Google Scholar 

  23. Masry, E. (1993). The wavelet transform of stochastic processes with stationary increments and its application to fractional Brownian motion,IEEE Trans. Info. Theor.,39(1), 260–264.

    Google Scholar 

  24. Meyer, Y. (1992).Ondelettes, Hermann, Paris.

    Google Scholar 

  25. Meyer, Y. (1992).Wavelets and Operators, vol. 37. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  26. Meyer, Y. (1993).Wavelets—Algorithms and Applications, SIAM Society for Industrial and Applied Mathematics, Philadelphia, PA.

    Google Scholar 

  27. Meyer, Y. and Coifman, R. (1997).Wavelets: Calderón-Zygmund and Multilinear Operators, vol. 48. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  28. Norros, I. (1995). On the use of fractional Brownian motion in the theory of connectionless networks,IEEE J. Selected Areas Comm.,13, 953–962.

    Google Scholar 

  29. Pipiras, V. and Taqqu, M.S. (1998). Convergence of the Weierstrass-Mandelbrot process to fractional Brownian motion, preprint.

  30. Ramanathan, J. and Zeitouni, O. (1991). On the wavelet transform of fractional Brownian motion,IEEE Trans. Info. Theor.,IT-37(4), 1156–1158.

    Google Scholar 

  31. Samorodnitsky, G. and Taqqu, M.S. (1994).Stable Non-Gaussian Processes: Stochastic Models with Infinite Variance, Chapman & Hall, New York.

    Google Scholar 

  32. Sellan, F. (1995). Synthèse de mouvements browniens fractionnaires à l'aide de la transformation par ondelettes,Comptes Rendus de l'Académie des Sciences de Paris,321, 351–358, Série I.

    Google Scholar 

  33. Sinai, Ya.G. (1976). Self-similar probability distributions,Theor. Prob. Appl.,21, 64–80.

    Google Scholar 

  34. Wornell, G. (1996).Signal Processing with Fractals: A Wavelet-Based Approach, Prentice-Hall, Upper Saddle River, NJ.

    Google Scholar 

  35. Zygmund, A. (1979).Trigonometric Series, Vols. I and II, Cambridge University Press, Cambridge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by John J. Benedetto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, Y., Sellan, F. & Taqqu, M.S. Wavelets, generalized white noise and fractional integration: The synthesis of fractional Brownian motion. The Journal of Fourier Analysis and Applications 5, 465–494 (1999). https://doi.org/10.1007/BF01261639

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01261639

Keywords and Phrases

Math Subject Classifications

Navigation