Skip to main content
Log in

The probability of generating a finite simple group

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We show that two random elements of a finite simple groupG generateG with probability → 1 as |G| → ∞. This settles a conjecture of Dixon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aschbacher, M. and Seitz, G. M.: Involutions in Chevalley groups over finite fields of even order,Nagoya Math. J. 63 (1976), 1–91; correction:ibid. 72 (1978), 135–136.

    Google Scholar 

  2. Babai, L.: The probability of generating the symmetric group,J. Combin. Theory Ser. A 52 (1989), 148–153.

    Google Scholar 

  3. Carter, R. W.: Conjugacy classes in the Weyl group, in A. Borelet al. (eds),Seminar on Algebraic Groups and Related Topics, Lecture Notes in Math. 131, Springer, Berlin, 1970, pp. 297–318.

    Google Scholar 

  4. Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A.:Atlas of Finite Groups, Oxford Univ. Press, 1985.

  5. Dixon, J. D.: The probability of generating the symmetric group,Math. Z. 110 (1969), 199–205.

    Google Scholar 

  6. Gorenstein, D. and Lyons, R.: The local structure of finite groups of characteristic 2 type,Memo. Amer. Math. Soc. 42, No. 276 (1983).

    Google Scholar 

  7. Iwahori, N.: Centralizers of involutions in Chevalley groups, in A. Borelet al. (eds),Seminar on Algebraic Groups and Related Topics, Lecture Notes in Math. 131, Springer, Berlin, 1970, pp. 267–295.

    Google Scholar 

  8. Kantor, W. M.: Some topics in asymptotic group theory, in M. W. Liebeck and J. Saxl (eds),Groups, Combinatorics and Geometry, London Math. Soc. Lecture Notes 165 (1992), pp. 403–421.

  9. Kantor, W. M. and Lubotzky, A.: The probability of generating a finite classical group,Geom. Dedicata 36 (1990), 67–87.

    Google Scholar 

  10. Landazuri, V. and Seitz, G. M.: On the minimal degrees of projective representations of the finite Chevalley groups,J. Algebra 32 (1974), 418–443.

    Google Scholar 

  11. Liebeck, M. W. and Saxl, J.: On the orders of maximal subgroups of the finite exceptional groups of Lie type,Proc. London Math. Soc. 55 (1987), 299–330.

    Google Scholar 

  12. Liebeck, M. W., Saxl, J. and Seitz, G. M.: Subgroups of maximal rank in finite exceptional groups of Lie type,Proc. London Math. Soc. 65 (1992), 297–325.

    Google Scholar 

  13. Liebeck, M. W., Saxl, J. and Testerman, D. M.: Simple subgroups of large rank in groups of Lie type,Proc. London Math. Soc., to appear.

  14. Liebeck, M. W. and Seitz, G. M.: Maximal subgroups of exceptional groups of Lie type, finite and algebraic,Geom. Dedicata 35 (1990), 353–387.

    Google Scholar 

  15. Malle, G.: The maximal subgroups of2 F 4(q 2),J. Algebra 139 (1991), 52–69.

    Google Scholar 

  16. Malle, G., Saxl, J. and Weigel, T.: Generation of classical groups,Geom. Dedicata 49 (1994), 85–116.

    Google Scholar 

  17. Springer, T. A. and Steinberg, R.: Conjugacy classes, in A. Borelet al. (eds),Seminar on Algebraic Groups and Related Topics, Lecture Notes in Math. 131, Springer-Verlag, Berlin, 1970, pp. 168–266.

    Google Scholar 

  18. Zsigmondy, K.: Zur Theorie der Potenzreste,Monatsh. Math. Phys. 3 (1892), 265–284.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liebeck, M.W., Shalev, A. The probability of generating a finite simple group. Geom Dedicata 56, 103–113 (1995). https://doi.org/10.1007/BF01263616

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01263616

Mathematics Subject Classifications (1991)

Navigation