Skip to main content
Log in

Lifting measures to Markov extensions

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

Generalizing a theorem ofHofbauer (1979), we give conditions under which invariant measures for piecewise invertible dynamical systems can be lifted to Markov extensions. Using these results we prove:

  1. (1)

    IfT is anS-unimodal map with an attracting invariant Cantor set, then ∫log|T′|dμ=0 for the unique invariant measure μ on the Cantor set.

  2. (2)

    IfT is piecewise invertible, iff is the Radon-Nikodym derivative ofT with respect to a σ-finite measurem, if logf has bounded distortion underT, and if μ is an ergodicT-invariant measure satisfying a certain lower estimate for its entropy, then μ≪m iffh μ (T)=Σlogf dμ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bowen, R.: Topological entropy for noncompact sets. Trans. Amer. Math. Soc.184, 125–136 (1973).

    Google Scholar 

  2. Collet, P., Eckmann, J. P.: Iterated Maps on the Interval as Dynamical Systems. Boston: Birkhäuser. 1980.

    Google Scholar 

  3. Denker, M., Keller, G., Urbànski, M.: On the uniqueness of equilibrium states for piecewise monotone mappings. Preprint Univ. Heidelberg. 1988.

  4. Guckenheimer, J.: Sensitive dependence to initial conditions for one dimensional maps. Comm. Math. Phys.70, 133–160 (1979).

    Google Scholar 

  5. Hofbauer, F.: On intrinsic ergodicity of piecewise monotonic transformations with positive entropy. Israel J. Math.34, 213–237 (1979).

    Google Scholar 

  6. Hofbauer, F.: The topological entropy of the transformationxax(1−x). Mh. Math.90, 117–141 (1980).

    Google Scholar 

  7. Hofbauer, F.: On intrinsic ergodicity of piecewise monotonic transformations with positive entropy, part II. Israel J. Math.38, 107–115 (1981).

    Google Scholar 

  8. Hofbauer, F.: Piecewise invertible dynamical systems. Probability Theory Rel Fields72, 359–386 (1986).

    Google Scholar 

  9. Hofbauer, F., Keller, G.: Ergodic properties of invariant measures for piecewise monotonic transformations. Math. Z.180, 119–140 (1982).

    Google Scholar 

  10. Johnson, S. D.: Continuous measures and strange attractors in one dimension. Ph. D. Thesis Stanford (1985).

  11. Keller, G.: Markov extensions, zeta functions, and Fredholm theory for piecewise invertible dynamical systems. Preprint Univ. Heidelberg. To appear in Trans. Amer. Math. Soc. (1989).

  12. Ledrappier, F.: Some properties of absolutely continuous invariant measures on an interval. Ergodic Theory and Dynamical Systems1, 77–93 (1981).

    Google Scholar 

  13. Ledrappier, F., Misiurewicz, M.: Dimension of invariant measures for maps with exponent zero. Ergodic Theory and Dynamical Systems5, 595–610 (1985).

    Google Scholar 

  14. Misiurewicz, M.: Structure of mappings of an interval with zero entropy. Publ. Math. I.H.E.S.53, 5–16 (1981a).

    Google Scholar 

  15. Misiurewicz, M.: Absolutely continuous measures for certain maps of an interval. Publ. Math. I.H.E.S.53, 17–52 (1981b).

    Google Scholar 

  16. Nowicki, T.: On some dynamical properties ofS-unimodal maps on an interval. Fundamenta Math.126, 27–43 (1985).

    Google Scholar 

  17. Oxtoby, J. C.: Ergodic sets. Bull. Amer. Math. Soc.58, 116–136 (1952).

    Google Scholar 

  18. Petersen, K.: Chains, entropy, coding. Ergodic Theory and Dynamical Systems6, 415–448 (1986).

    Google Scholar 

  19. Preston, Ch.: Iterates of Maps on an Interval. Lect. Notes Math. 999, Berlin-Heidelberg-New York-Tokyo: Springer (1983).

    Google Scholar 

  20. Salama, J. A.: Topological entropy and classification of countable chains. Ph. D. Thesis, Chapel Hill (1984).

  21. Wagoner, J. B.: Topological Markov chains,C *-algebras andK 2. Adv. in Math.71, 133–185 (1988).

    Google Scholar 

  22. Walters, P.: Equilibrium states for β-transformations and related transformations. Math. Z.159, 65–88 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keller, G. Lifting measures to Markov extensions. Monatshefte für Mathematik 108, 183–200 (1989). https://doi.org/10.1007/BF01308670

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01308670

Keywords

Navigation