Skip to main content
Log in

A parallel algorithm for the eigenvalues and eigenvectors of a general complex matrix

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

A new parallel Jacobi-like algorithm is developed for computing the eigenvalues of a general complex matrix. Most parallel methods for this problem typically display only linear convergence, Sequential ‘norm-reducing’ algorithms also exist and they display quadratic convergence in most cases. The new algorithm is a parallel form of the ‘norm-reducing’ algorithm due to Eberlein. It is proven that the asymptotic convergence rate of this algorithm is quadratic. Numerical experiments are presented which demonstrate the quadratic convergence of the algorithm and certain situations where the convergence is slow are also identified. The algorithm promises to be very competitive on a variety of parallel architectures. In particular, the algorithm can be implemented usingn 2/4 processors, takingO(n log2 n) time for random matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bischof, C.: Computing the singular value decomposition on a distributed system of vector processors. Technical report 87 869, Department of Computer Science, Cornell University 1987

  2. Brent, R.P., Luk, F.T.: The solution of singular-value and symmetric eigenvalue problems on multiprocessor arrays. SIAM J. Sci. Stat. Comput.6, 69–84 (1985)

    Google Scholar 

  3. Causey, R.L.: Computing eigenvalues of non hermitian matrices by methods of Jacobi type. J. SIAM6, 172–181 (1958)

    Google Scholar 

  4. Eberlein, P.J.: A Jacobi method for the automatic computation of eigenvalues and eigenvectors of an arbitrary matrix. J. SIAM10, 74–88 (1962)

    Google Scholar 

  5. Eberlein, P.J.: On the Schur decomposition of a matrix for parallel computation. IEEE Trans. Comput.36, 167–174 (1987)

    Google Scholar 

  6. Eberlein, P.J., Moothroyd, J.: Solution to the eigenproblem by a normreducing Jacobi-type method. Numer. Math.4, 24–40 (1968)

    Google Scholar 

  7. Fan, K., Hoffman, A.J.: Lower bounds for the rank and location of eigenvalues of a matrix. National Bureau of Standards Applied Math. Series39, 117–130 (1954)

    Google Scholar 

  8. Forsythe, G.E., Henrici, P.: The cyclic Jacobi method for computing the principal values of a complex matrix. Trans. Am. Math. Soc.94, 1–23 (1960)

    Google Scholar 

  9. Goldstine, H.H., Horwitz, L.P.: A procedure for the diagonalization of normal matrices. J ACM6, 176–195 (1959)

    Google Scholar 

  10. Goldstine, H.H., Murray, F.J., Neumann, J. von: The Jacobi method for real symmetric matrices. J ACM6, 59–96 (1959)

    Google Scholar 

  11. Golub, G., Van Loan, C.: Matrix computations. Johns Hopkins University Press (1983)

  12. Hansen, E.R.: On Jacobi methods and block Jacobi methods for computing matrix eigenvalues. PhD thesis, Stanford University 1960

  13. Jacobi, C.G.J.: Über ein Verfahren die in Theorie der Säkularstörungen vorkommenden Gleichungen numerisch aufzulösen. J. Reine Angew. Math.30, 51–95 (1846)

    Google Scholar 

  14. Luk, F.T., Park, H.T.: On parallel Jacobi orderings. Technical report EE-CEG-86-5, School of Electrical Engineering, Cornell University 1986

  15. Luk, F.T., Park, H.T.: A proof of convergence for two parallel Jacobi SVD algorithms. Technical Report EE-CEG-86-12, School of Electrical Engineering, Cornell University 1986

  16. Osborne, E.E.: On pre-conditioning of matrices. J. ACM7, 338–345 (1960)

    Google Scholar 

  17. Pardekooper, M.H.C.: An eigenvalue algorithm based on norm-reducing transformations. PhD thesis, Technische Universiteit Eindhoven 1969

  18. Pardekooper, M.H.C.: A quadratically convergent parallel Jacobi process for diagonally dominant matrices with distinct eigenvalues. J. Comput. Appl. Math.27, 3–16 (1989)

    Google Scholar 

  19. Ruhe, A.: On the quadratic convergence of a generalization of the Jacobi method to arbitrary matrices. BIT8, 210–231 (1968)

    Google Scholar 

  20. Rutishauser, H.: Une methode pour le calcul des values propres des matrices nonsymetriques. Comptes Rendus259, 2758 (1964)

    Google Scholar 

  21. Sameh, A.H.: On Jacobi and Jacobi-like algorithms for a parallel computer. Math. Comput.25, 579–590 (1971)

    Google Scholar 

  22. Schreiber, R.: Solving eigenvalue and singular value problems on an undersized systolic array. SIAM J. Sci. Stat. Comput.7, 441–451 (1986)

    Google Scholar 

  23. Shroff, G.: Parallel Jacobi algorithms for the algebraic eigenvalue problem. PhD thesis, Rensselaer Polytechnic Institute 1990

  24. Shroff, G., Schreiber, R.: On the convergence of the cyclic Jacobi method for parallel block orderings. SIAM J. Matrix Anal. Appl.10 (1989)

  25. Stewart, G.W.: A Jacobi-like algorithm for computing the schur decomposition of a nonhermitian matrix. SIAM J. Sci. Stat. Comput.6, 853–864 (1985)

    Google Scholar 

  26. Veselic, K.: On a class of Jacobi-like procedures for diagonalizing arbitrary real matrices. Numer. Math.33, 157–172 (1979)

    Google Scholar 

  27. Veselic, K.: A quadratically convergence Jacobi-like method for real matrices with complex conjugate eigenvalues. Numer. Math.33, 425–435 (1979)

    Google Scholar 

  28. Wilkinson, J.H.: Almost diagonal matrices with multiple or close eigenvalues. Linear Algebra Appl.1, 1–12 (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by the Office of Naval Research under Contract N00014-86-k-0610 and by the U.S. Army Research Office under Contract DAAL 03-86-K-0112. A portion of this research was carried out while the author was visiting RIACS, Nasa Ames Research Center

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shroff, G.M. A parallel algorithm for the eigenvalues and eigenvectors of a general complex matrix. Numer. Math. 58, 779–805 (1990). https://doi.org/10.1007/BF01385654

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01385654

Subject classification

Navigation