Skip to main content
Log in

Numerical simulation of tridimensional electromagnetic shaping of liquid metals

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

We describe a numerical method to compute free surfaces in electromagnetic shaping and levitation of liquid metals. We use an energetic variational formulation and optimization techniques to compute, a critical point. The surfaces are represented by piecewise linear finite elements. Each step of the algorithm requires solving an elliptic boundary value problem in the exterior of the intermediate surfaces. This is done by using an integral representation on these surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Atkinson, K.E. (1990): A survey of boundary integral equations methods for the numerical solution of Laplace's equation in three dimensions. In: M.A. Golberg ed., Math. Concepts Methods Sci. Eng.42, pp. 1–34 Plenum Press

  2. Brancher, J.-P., Etay, J., Sero-Guillaume, O. (1983): Formage d'une lame. J. de Mécanique Théorique et Appliquée.2 (6) 976–989

    Google Scholar 

  3. Brancher, J.-P., Sero-Guillaume, O. (1983): Sur l'équilibre des liquides magnétiques, applications à la magnétostatique. J de Mécanique Théorique et Appliquée.2 (2) 265–283

    Google Scholar 

  4. Coulaud, O., Henrot, A. (1991): A nonlinear boundary value problem solved by spectral methods. Appl. Anal.43, 229–244

    Google Scholar 

  5. Coulaud, O., Henrot, A. (1993): Numerical approximation of a free boundary problem arising in electromagnetic shaping 237–303 (to appear)

  6. Dautray, R., Lions, J.-L. (1988): Analyse mathématique et calcul numérique pour les Sciences et les Techniques.5 (6)

  7. Dennis J.E., JR., More, J.J. (1977): Quasi-Newton method motivation and theory. SIAM Review19 (1) 46–89

    Google Scholar 

  8. Dennis J.E., JR., Schnabel, R.B. (1983): Numerical methods for unconstrained optimization and nonlinear equations. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  9. Descloux, J. (1990): On the two dimensional magnetic shaping problem without surface tension. Report no 07.90, Ecole Polytechnique Fédérale de Lausanne, Suisse

    Google Scholar 

  10. Etay, J. (1982): Le formage électromagnétique des métaux liquides. Aspects expérimentaux et théoriques. Thèse Docteur-Ingénieur. U.S.M.G., I.N.P.G. Grenoble, France

    Google Scholar 

  11. Etay, J., Mestel, A.J., Moffatt, H.K. (1988): Deflection of a stream of liquid metal by means of an alternating magnetic field. J. Fluid Mech.194, 309–331

    Google Scholar 

  12. Gagnoud, A., Brancher, J.-P. (1985): Proceedings of the Conference of Computation of Electromagnetic Fields. Fort Collins, USA

  13. Gagnoud, A., Etay, J., Garnier, M. (1986): Le problème de frontière libre en lévitation électromagnétique. J. de Mécanique Théorique et Appliquée,5 (6) 911–925

    Google Scholar 

  14. Gagnoud, A., Sero-Guillaume, O. (1986): Le creuset froid de lévitation: modélisation électromagnétique et application. E.D.F. Bull. Etudes et Recherches, Série B,1, 41–51

    Google Scholar 

  15. Gilbert, J.-Ch., Lemarechal, C. (1988): Some numerical experiments with variable storage Quasi-Newton algorithms. HASA Working Paper WP,88 (121) p. 2361. Laxenburg, Austria

    Google Scholar 

  16. Grisvard, P. (1985): Elliptic problems in non smooth domains. Monogr. Stud. Math.24

  17. Henrot, A., Pierre, M. (1989): Un problème inverse en formage de métaux liquides. M2AN23, 155–177

    Google Scholar 

  18. Hornung, U., Mittelmann, H.D. (1988): The augmented skeleton method for parametrized surfaces of liquid drops. Technical Report No113. Arizona State University, Tempe, AZ

    Google Scholar 

  19. Johnson, C.G.L., Scott, L.R. (1989): An analysis of quadrature errors in second-kind boundary integral methods. Siam J. Numer. Anal.26 (6) 1356–1382

    Google Scholar 

  20. Li, B.Q., Evans, J.W. (1989): Computation of shapes of electromagnetically supported menisci in electromagnetic casters. Part. I: Calculations in the two dimensions. IEEE Trans. Magnetics.25 (6) 4442

    Google Scholar 

  21. Mestel, A.J. (1982): Magnetic levitation of liquid metals. J. Fluid Mech.117, 27–43

    Google Scholar 

  22. Minoux, M. (1983): Programmation mathématique; théorie et algorithmes, tome 1. Dunod, Paris

    Google Scholar 

  23. Nédelec, J.C. (1977): Approximation des équations intégrales en mécanique et en physique. Rapport, Centre de Mathématiques Appliquées, Ecole Polytechnique, Palaiseau, France

    Google Scholar 

  24. Oren, S.S., Spedicato, E. (1976): Optimal conditioning of self-scaling variable metric algorithms. Math. Program.10, 70–90

    Google Scholar 

  25. Pierre, M., Roche, J.-R. (1991): Numerical computation of free boundaries in 2-d electromagnetic shaping. Eur. J. Mech., B10 (5) 489–500

    Google Scholar 

  26. Sero-Guillaume, O. (1983): Sur l'équilibre des ferrofluides et des métaux liquides Thèse, Institut Polytechnique de Lorraine, Nancy, France

    Google Scholar 

  27. Simon, J. (1988): Second variations for domain optimization problems. Control of distributed parameter systems. Proceedings 4th International Conference in Vorau, Birkhauser. Basel

    Google Scholar 

  28. Sneyd, A.D., Moffatt, H.K. (1982): Fluid dynamical aspects of the levitation melting process. J. of Fluid Mech.117, 45–70

    Google Scholar 

  29. Zolésio, J.P. (1981): The Material derivative (or speed) method for shape optimization. In: J. Cea, E.J., Hand, eds., Optimization of Distributed Parameter Structures vol. II. pp. 1089–1151. Sijhoff and Nordhoff, Alphen aan den Rijn

    Google Scholar 

  30. Zolésio, J.P. (1984): Numerical algorithm and existence result for a Bernoulli-like problem steady free boundary problem. Large Scale Syst.6 (3) 263–278

    Google Scholar 

  31. Zolésio, J.P. (1990): Introduction to shape optimisation problems and free boundary problems. Séminaire de Mathématiques Supérieures. Université de Montréal, Montréal, Canada

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierre, M., Roche, J.R. Numerical simulation of tridimensional electromagnetic shaping of liquid metals. Numer. Math. 65, 203–217 (1993). https://doi.org/10.1007/BF01385748

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01385748

Mathematics Subject Classification (1991)

Navigation