Skip to main content
Log in

On the asymptotic exactness of error estimators for linear triangular finite elements

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

This paper deals with a-posteriori error estimates for piecewise linear finite element approximations of elliptic problems. We analyze two estimators based on recovery operators for the gradient of the approximate solution. By using superconvergence results we prove their asymptotic exactness under regularity assumptions on the mesh and the solution.

One of the estimators can be easily computed in terms of the jumps of the gradient of the finite element approximation. This estimator is equivalent to the error in the energy norm under rather general conditions. However, we show that for the asymptotic exactness, the regularity assumption on the mesh is not merely technical. While doing this, we analyze the relation between superconvergence and asymptotic exactness for some particular examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth, M., Craig, A.W.: A posteriori error estimators in the finite element method. Num. Anal. Rep. NA 88/03, Durham, England, 1988

    Google Scholar 

  2. Andreev, A.B. Lazarov, R.D.: Superconvergence of the gradient for quadratic triangular finite elements. Numer. Methods for PDEs,4, 15–32 (1988)

    Google Scholar 

  3. Babuška, I., Miller, A.: A-posteriori error estimates and adaptive techniques for the finite element method. Tech. Note BN-968, IPST, University of Maryland, 1981

  4. Babuška, I., Miller, A.: A feedback finite element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator. Comp. Methods Appl. Mech. Engrg.61, 1–40 (1987)

    Google Scholar 

  5. Babuška, I., Rheinboldt, W.C.: A posteriori error estimators in the finite element method. Internat. J. Numer. Meth. Eng.12, 1597–1615 (1978)

    Google Scholar 

  6. Babuška, I., Rheinboldt, W.C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal.15, 736–754 (1978)

    Google Scholar 

  7. Babuška, I., Rheinboldt, W.C.: Analysis of optimal finite element meshes inR 1. Math. Comp.33, 435–463 (1979)

    Google Scholar 

  8. Babuška, I., Rheinboldt, W.C.: A posteriori error analysis of finite element solutions for one-dimensional problems. SIAM J. Numer. Anal.18, 565–589 (1981)

    Google Scholar 

  9. Bank, R.E., Weiser, A.: Some a posteriori error estimators for elliptic partial differential equations. Math. Comp.44, 283–301 (1985)

    Google Scholar 

  10. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Amsterdam: North Holland 1978

    Google Scholar 

  11. Durán, R.: On polynomial approximation in Sobolev spaces. SIAM J. Numer. Anal.5, 985–988 (1983)

    Google Scholar 

  12. Durán, R., Muschietti, M.A., Rodriguez, R.: Asymptotically exact error estimators for rectangular finite elements. (To appear)

  13. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Boston: Pitman 1985

    Google Scholar 

  14. Hinton, E., Ozakca, M., Rao, N.V.R.: Adaptative analysis of thin shells using facet elements. CR/950/90, University College of Swansea (1990)

  15. Krîzěk, M., Neittaanmäki, P.: Superconvergence phenomenom in the finite element method arising from averaging gradients. Numer. Math.45, 105–116 (1984)

    Google Scholar 

  16. Levine, N.: Stress sampling points for linear triangles in the finite element method. IMA J. Numer. Anal.5, 407–427 (1985)

    Google Scholar 

  17. Lin, Q., Lü, T.: Asymptotic expansions for finite element approximation of elliptic problems on polygonal domains. In: Computing Methods in Applied Sciences and Engineering, Proc. Sixth Int. Conf. Versailles, 1983. L.N. in Comp. Sci., North-Holland, INRIA, pp. 317–321 (1984)

  18. Mesztenyi, C., Szymczak, W.: FEARS user's manual for UNIVAC 1100. Tech. Note BN-991, IPST, University of Maryland (1982)

  19. Oganesjan, L.A., Ruhovec, L.A.: Investigation of the convergence rate of variational-difference schemes for elliptic second order equations in a two dimensional domain with a smooth boundary. Z. Vychisl. Mat. i Mat. Fiz.9, 1102–1120 (1969) [Translation in USSR Comput. Math. Math. Phys.9, 153–188 (1969)]

    Google Scholar 

  20. Rivara, M.C.: EXPDES user's manual. Catholic Univ., Leuven, Belgium (1984)

    Google Scholar 

  21. Rivara, M.C.: Adaptive multigrid software for the finite element method. Ph.D. dissertation, Catholic. Univ., Leuven, Belgium (1984)

    Google Scholar 

  22. Verfürth, R.: A posteriori error estimators for the Stokes equations. Numer. Math.55, 309–325 (1989)

    Google Scholar 

  23. Wheeler, M.F., Whiteman, J.R.: Superconvergent recovery of gradients on subdomains from piecewise linear finite element approximations. Numer. Methods for PDEs,3, 357–374 (1987)

    Google Scholar 

  24. Whiteman, J.R., Goodsell, G.: Some gradient superconvergence results in the finite element method. In: Numerical Analysis and Parallel Processing. Lecture Notes in Math. # 1397. Berlin Heidelberg New York: Springer 182–259

  25. Zlámal, M.: Some superconvergence results in the finite element method. In: Mathematical Aspects of the Finite Element Method, Lecture Notes in Math. # 606, pp. 353–362. Berlin Heidelberg New York: Springer 1977

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durán, R., Muschietti, M.A. & Rodríguez, R. On the asymptotic exactness of error estimators for linear triangular finite elements. Numer. Math. 59, 107–127 (1991). https://doi.org/10.1007/BF01385773

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01385773

Subject classifications

Navigation