Skip to main content
Log in

The minimal number of Seifert circles equals the braid index of a link

  • Published:
Inventiones mathematicae Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Alexander, J.W.: A lemma on system of knotted curves. Proc. Natl. Acad. Sci. USA9, 93–95 (1923)

    Google Scholar 

  2. Birman, J.S.: Braids, links, and mapping class groups. Ann. Math. Stud., vol. 82. Princeton, NJ: Princeton Univ. Press (1974)

    Google Scholar 

  3. Franks, J., Williams, R.F.: Braids and the Jones-Conway polynomial. Preprint 1985

  4. Freyd, P., Yetter, D.; Hoste, J.; Lickorish, W.B.R., Millett, K.; Ocneanu, A.: A new polynomial invariant of knots and links. Bull. Am. Math. Soc.12, 239–246 (1985)

    Google Scholar 

  5. Morton, H.R.: Seifert circles and knot polynomials. Math. Proc. Camb. Philos. Soc.99, 107–109 (1986)

    Google Scholar 

  6. Morton, H.R.: Closed braid representations for a link, and its 2-variable polynomial. Preprint Liverpool 1985

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, S. The minimal number of Seifert circles equals the braid index of a link. Invent Math 89, 347–356 (1987). https://doi.org/10.1007/BF01389082

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01389082

Keywords

Navigation