Skip to main content
Log in

The convergence of spline collocation for strongly elliptic equations on curves

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

Most boundary element methods for two-dimensional boundary value problems are based on point collocation on the boundary and the use of splines as trial functions. Here we present a unified asymptotic error analysis for even as well as for odd degree splines subordinate to uniform or smoothly graded meshes and prove asymptotic convergence of optimal order. The equations are collocated at the breakpoints for odd degree and the internodal midpoints for even degree splines. The crucial assumption for the generalized boundary integral and integro-differential operators is strong ellipticity. Our analysis is based on simple Fourier expansions. In particular, we extend results by J. Saranen and W.L. Wendland from constant to variable coefficient equations. Our results include the first convergence proof of midpoint collocation with piecewise constant functions, i.e., the panel method for solving systems of Cauchy singular integral equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agranovitch, M.S.: Spectral properties of elliptic pseudodifferential operators on a closed curve. Russ. Math. Surv.13, 279–281 (1979)

    Google Scholar 

  2. Arnold, D.N.: A spline-trigonometric Galerkin method and an exponentially convergent boundary integral method. Math. Comput.41, 383–397 (1983)

    Google Scholar 

  3. Arnold, D.N., Wendland, W.L.: On the asymptotic convergence of collocation methods. Math. Comput.41, 349–381 (1983)

    Google Scholar 

  4. Atkinson, K.E.: A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind. Philadelphia: Soc. Ind. Appl. Math. 1976

    Google Scholar 

  5. Atkinson, K.E., Graham, I., Sloan, I.: Piecewise continuous collocation for integral equations. SIAM J. Numer. Anal.20, 172–186 (1983)

    Google Scholar 

  6. Banerjee, P.K., Butterfield, R.: Developments in Boundary Element Methods-1. London: Appl. Sci. Publ. 1979

    Google Scholar 

  7. Banerjee, P.K., Shaw, R.P.: Developments in Boundary Element Methods-2. London: Appl. Sci. Publ. 1982

    Google Scholar 

  8. Bolteus, L., Tullberg, O.: BEMSTAT — A new type of boundary element program for two-dimensional elasticity problems. In: Boundary Element Methods. C.A. Brebbia (ed.), pp. 518–537. Berlin-Heidelberg-New York: Springer 1981

    Google Scholar 

  9. Brebbia, C.A.: Progress in Boundary Element Methods. London, Plymouth: Pentech Press 1981

    Google Scholar 

  10. Brebbia, C.A.: Boundary Element Methods. Berlin-Heidelberg-New York: Springer 1981

    Google Scholar 

  11. Brebbia, C.A.: Boundary Element Techniques, Methods in Engineering. Berlin-Heidelberg-New York: Springer 1983

    Google Scholar 

  12. Brebbia, C.A., Futagami, T., Tanaka, M.: Boundary Elements. Berlin-Heidelberg-New York: Springer 1983

    Google Scholar 

  13. Brebbia, C.A., Telles, J.C.F., Wrobel, L.C.: Boundary Element Techniques. Berlin-Heidelberg-New York: Springer 1984

    Google Scholar 

  14. Chatelin, F.: Spectral Approximation of Linear Operators. New York: Academic Press 1983

    Google Scholar 

  15. Crouch, S.L., Starfield, A.H.: Boundary Element Methods in Solid Mechanics. London: George Allen & Unwin 1983

    Google Scholar 

  16. Cruse, T.A.: Application of the boundary-integral equation solution method in solid mechanics. In: Variational Methods in Engineering. Dept. Civil Eng. Southampton Univ., England, 9.1–9.29, 1972

    Google Scholar 

  17. Douglas, J., Jr., Dupont, T., Wahlbin, L.: OptimalL error estimates for Galerkin approximations to solutions of two point boundary value problems. Math. Comput.29, 475–583 (1975)

    Google Scholar 

  18. Elschner, J., Schmidt, G.: On spline interpolation in periodic Sobolev spaces. preprint P-Math-01/83. Institut für Mathematik, Akademie der Wissenschaften der DDR, Berlin 1983

    Google Scholar 

  19. Filippi, P.: Theoretical Acoustics and Numerical Techniques. CISM Courses and Lectures 277. Wien-New York: Springer 1983

    Google Scholar 

  20. Hämmerlin, G., Schumaker, L.L.: Procedures for kernel approximation and solution of Fredholm integral equations of the second kind. Numer. Math.34, 125–141 (1980)

    Google Scholar 

  21. Hayes, J.K., Kahaner, D.K., Kellner, R.G.: An improved method for numerical conformal mapping. Math. Comput.26, 327–334 (1972)

    Google Scholar 

  22. Helfrich, H.-P.: Simultaneous approximation in negative norms of arbitrary order. R.A.I.R.O. Numer. Anal.15, 231–235 (1981)

    Google Scholar 

  23. Hörmander, L.: Fourier integral operators I. Acta Math.127, 79–183 (1971)

    Google Scholar 

  24. Hoidn, H.-P.: Die Kollokationsmethode angewandt auf die Symmsche Integralgleichung. Doctoral Thesis ETH Zürich, Switzerland, 1983

  25. Hsiao, G.C., Kopp, P., Wendland, W.L.: Some applications of a Galerkin collocation method for integral equations of the first kind. Math. Meth. Appl. Sci.6, 280–325 (1984)

    Google Scholar 

  26. Ivanov, V.V.: The Theory of Approximate Methods and their Application to the Numerical Solution of Singular Integral Equations. Leyden: Noordhoff Int. Publ. 1976

    Google Scholar 

  27. Mukherjee, S.: Boundary Element Methods in Creep and Fracture. London-New York: Applied Sci. Publ. 1982

    Google Scholar 

  28. Mustoe, G.G., Mathews, I.C.: Direct boundary integral methods, point collocation and variational procedures (To appear)

  29. Nitsche, J., Schatz, A.: On local approximation properties ofL 2-projections on spline subspaces. Appl. Anal.2, 161–168 (1972)

    Google Scholar 

  30. Nitsche, J., Schatz, A.: Interior estimates for Ritz-Galerkin methods. Math. Comput.28, 937–958 (1974)

    Google Scholar 

  31. Noble, B.: Error analysis of collocation methods for solving Fredholm integral equations. In: Topics in Numerical Analysis. J.H. Miller (ed.), pp. 211–232. London: Academic Press 1972

    Google Scholar 

  32. Prenter, P.M.: A collocation method for the numerical solution of integral equations. SIAM J. Numer. Anal.10, 570–581 (1973)

    Google Scholar 

  33. Prössdorf, S.: Ein Lokalisierungsprinzip in der Theorie der Spline-Approximationen und einige Anwendungen. Math. Nachr.119, 239–255 (1984)

    Google Scholar 

  34. Prössdorf, S., Rathsfeld, A.: A spline collocation method for singular integral equations with piecewise continuous coefficients. Integral Equations Oper. Theory7, 536–560 (1984)

    Google Scholar 

  35. Prössdorf, S., Rathsfeld, A.: On spline Galerkin methods for singular integral equations with piecewise continuous coefficients. (To appear in Numer. Math.)

  36. Prössdorf, S., Schmidt, G.: A finite element collocation method for singular integral equations. Math. Nachr.100, 33–60 (1981)

    Google Scholar 

  37. Prössdorf, S., Schmidt, G.: A finite element collocation method for systems of singular integral equations. Preprint P-MATH-26/81. Institut für Mathematik, Akademie der Wissenschaften der DDR. Berlin 1981

    Google Scholar 

  38. Rizzo, F.J.: An integral equation approach to boundary value problems of classical elastostatics. Quart. Appl. Math.25, 83–95 (1967)

    Google Scholar 

  39. Saranen, J., Wendland, W.L.: On the asymptotic convergence of collocation methods with spline functions of even degree. (Preprint 700, Math., Techn. Univ. Darmstadt 1982) (To appear in Math. Comput.45 (1985))

  40. Saranen, J., Wendland, W.L.: The Fourier series representation of pseudodifferential operators on closed curves. (In preparation)

  41. Schmidt, G.: On spline collocation for singular integral equations. Math. Nachr.111, 177–196 (1983)

    Google Scholar 

  42. Schmidt, G.: On spline collocation methods for boundary integral equations in the plane. (To appear in Math. Meth. Appl. Sci.7 (1985))

  43. Schmidt, G.: The convergence of Galerkin and collocation methods with splines for pseudodifferential equations on closed curves. Z. Anal. Anw.3, 371–384 (1984)

    Google Scholar 

  44. Seeley, R.: Topics in pseudodifferential operators. In: Pseudo-Differential Operators. L. Nirenberg (ed.), pp. 169–305. Rome: Edizione Cremonese 1969

    Google Scholar 

  45. Strichartz, R.S.: Multipliers on fractional Sobolev spaces. J. Math. Mech.16, 1031–1061 (1967)

    Google Scholar 

  46. Symm, G.T.: Integral equation methods in potential theory II. Proc. Royal Soc. London A275, 33–46 (1963)

    Google Scholar 

  47. Taylor, M.: Pseudodifferential Operators. Princeton: Princeton University Press 1981

    Google Scholar 

  48. Treves, F.: Introduction to Pseudodifferential and Fourier Integral Operators I. New York-London: Plenum Press 1980

    Google Scholar 

  49. Watson, J.O.: Hermitian cubic boundary elements for plane problems of fracture mechanics. Res. Mechanica4, 23–42 (1982)

    Google Scholar 

  50. Wendland, W.L.: Boundary element methods and their asymptotic convergence. In: Theoretical Acoustics and Numerical Techniques. P. Filippi (ed.), pp. 135–216. CISM courses and lectures 277. Wien-New York: Springer 1983

    Google Scholar 

  51. Quade, W., Collatz, L.: Zur Interpolationstheorie der reellen periodischen Funktionen. Sonderausgabe d. Sitzungsber. d. Preußischen Akad. d. Wiss., Phys.-math. Kl., pp. 1–49. Berlin: Verlag d. Akad. d. Wiss. 1938

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. Dr. h.c. mult. Lothar Collatz on the occasion of his 75th birthday

This work was begun at the Technische Hochschule Darmstadt where Professor Arnold was supported by a North Atlantic Treaty Organization Postdoctoral Fellowship. The work of Professor Arnold is supported by NSF grant BMS-8313247. The work of Professor Wendland was supported by the “Stiftung Volkswagenwerk”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnold, D.N., Wendland, W.L. The convergence of spline collocation for strongly elliptic equations on curves. Numer. Math. 47, 317–341 (1985). https://doi.org/10.1007/BF01389582

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01389582

Subject Classifications

Navigation