Skip to main content
Log in

K-Theory and analytic isomorphisms

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Ifs is a central nonzerodivisor of a ringA, letB denote thes-adic completion ofA. By a theorem of Karoubi, there is a long exact sequence relating theK-theory ofA, B, A[s −1], andB[s −1]. This sequence was first exploited by Vorst in his thesis. We give two applications of the Karoubi sequence: (1) an example of a 2-dimensional normal domain withNK 0≠0, answering a question of Murthy, and (2) a complete computation ofK 2 of an (affine) seminormal curve over an algebraically closed field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • [B] Bass, H.: Algebraic K-theory. New York: Benjamin 1968

    Google Scholar 

  • [B2] Bass, H.: Some problems in ‘classical’ algebraicK-theory. Lecture Notes in Math. 342, New York: Springer-Verlag 1973

    Google Scholar 

  • [BC] Brewer, J.W., Costa, D.L.: Seminormality and projective modules over polynomial rings. J. Algebra58, 208–216 (1979)

    Google Scholar 

  • [C] Carter, D.: Localization in lowerK-theory. Comm. Algebra8, 603–622 (1980)

    Google Scholar 

  • [C2] Carter, D.W.: LowerK-theory of finite groups. Preprint (1979)

  • [D] Davis, E.D.: On the geometric interpretation of seminormality. Proc. Amer. Math. Soc.68, 1–5 (1978)

    Google Scholar 

  • [DB] Dennis, R.K.: Bak's theorem onK 2 of polynomial extensions. preprint (1974)

  • [DK] Dennis, R.K., Krusemeyer, M.:K 2 (A[x, y]/xy), a problem of Swan, and related computations. J. Pure Appl. Algebra15, 125–148 (1979)

    Google Scholar 

  • [DW] Dayton, B.H., Roberts, L.G.:K 2 ofn lines in the plane. J. Pure Appl. Algebra15, 1–9 (1979)

    Google Scholar 

  • [DW] Dayton, B.H., Weibel, C.A.:K-theory of hyperplanes. Trans Amer. Math. Soc.257, 119–141 (1980)

    Google Scholar 

  • [EGA] Grothendieck, A.: Eléments de géométrie algébrique IV. Publ. Math. I.H.E.S. Vol. 24, Paris, 1964

  • [G] Gersten, S.M.: HigherK-theory of rings. Lecture Notes in Math. 341, New York: Springer-Verlag 1973

    Google Scholar 

  • [GQ] Grayson, D.: Higher AlgebraicK-theory: II (after D. Quillen), Lecture Notes in Math. 551, New York: Springer-Verlag 1973

    Google Scholar 

  • [GW] Geller, S.C., Weibel, C.A.:K 2 measures excision forK 1. Proc. Amer. Math. Soc. in press (1980)

  • [K] Karoubi, M.: Localisation de formes quadratiques I. Ann. Sci. École Norm. Sup., 4e série, t.7, 63–95 (1971)

    Google Scholar 

  • [K-V] Karoubi, M., Villamayor, O.:K-theorie algebrique etK-theorie topologique I. Math. Scand.28, 265–307 (1971)

    Google Scholar 

  • [L] Lam, T.Y.: Serre's Conjecture. Lecture Notes in Math. 635, New York: Springer-Verlag 1978

    Google Scholar 

  • [Mat] Matsumura, H.: Commutative Algebra. New York: Benjamin 1970

    Google Scholar 

  • [MP] Murthy, M.P., Pedrini, C.:K 0 andK 1 of polynomial rings. Lecture Notes in Math. 342, New York: Springer-Verlag 1973

    Google Scholar 

  • [N] Nagata, M.: Local Rings. New York: Interscience 1962

    Google Scholar 

  • [Q] Quillen, D.: Higher AlgebraicK-theory I. Lecture Notes in Math. 341, New York: Springer-Verlag 1973

    Google Scholar 

  • [R] Reiner, I.: Class groups and picard groups of group rings and orders. CBMS Regional Conf. series in Math. No. 26, AMS, Providence, 1976

    Google Scholar 

  • [S] Swan, R.:K-theory of finite groups and orders. Lecture Notes in Math. 149, New York: Springer-Verlag 1970

    Google Scholar 

  • [Sam] Samuel, P.: Lectures on unique factorization domains. Tata Institute of Fundamental Research, Lectures on Math. and Physics v. 30, Bombay, 1964

  • [Str] Strooker, J.R.: The fundamental group of the general linear group. J. Algebra48, 477–508 (1977)

    Google Scholar 

  • [v.d.K] van der Kallen, W.: Sur leK 2 des nombres duax. C.R. Acad. Sci. Paris, Sér. A, t.273, 1204–1207 (1971)

    Google Scholar 

  • [V] Vorst, A.: Localization of theK-theory of polynomial extensions. Math. Ann.244, 33–53 (1979)

    Google Scholar 

  • [W1] Weibel, C.: The homotopy exact sequence in algebraicK-theory, Comm. Algebra6, 1635–1646 (1978)

    Google Scholar 

  • [W2] Weibel, C.: Nilpotence in algebraicK-theory. J. Algebra61, 298–307 (1979)

    Google Scholar 

  • [W3] Weibel, C.:KV-theory of categories. Preprint (1979)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by NSF Grant MCS-79-03537

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weibel, C.A. K-Theory and analytic isomorphisms. Invent Math 61, 177–197 (1980). https://doi.org/10.1007/BF01390120

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01390120

Keywords

Navigation