Skip to main content
Log in

Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

The Lagrange-Galerkin method is a numerical technique for solving convection — dominated diffusion problems, based on combining a special discretisation of the Lagrangian material derivative along particle trajectories with a Galerkin finite element method. We present optimal error estimates for the Lagrange-Galerkin mixed finite element approximation of the Navier-Stokes equations in a velocity/pressure formulation. The method is shown to be nonlinearly stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev spaces, New York: Academic Press 1975

    Google Scholar 

  2. Benqué, J.P., Labadie, G., Ronat, J.: A new finite element method for Navier-Stokes equations coupled with a temperature equation. In: T. Kawai (ed.) Proc. 4th Int. Symp. on finite element methods in flow problems, pp. 295–302. Amsterdam: North-Holland 1982

    Google Scholar 

  3. Bercovier, M., Pironneau, O.: Characteristics and the finite element method. In: T. Kawai (ed.) Proc. 4th Int. Symp. On finite element methods in flow problems, pp. 67–73. Amsterdam. North-Holland 1982

    Google Scholar 

  4. Bernardi, C., Raugel, G.: Analysis of some finite elements for the Stokes problem. Math. Comput.44, 71–80 (1985)

    Google Scholar 

  5. Chorin, A.J., Marsden, J.E.: A Mathematical introduction to fluid mechanics. Berlin Heidelberg New York: Springer 1984

    Google Scholar 

  6. Ciarlet, P.: The finite element method for elliptic problems. Amsterdam: North-Holland 1978

    Google Scholar 

  7. Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numér7, 33–76 (1973)

    Google Scholar 

  8. Douglas, J. Jr., Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal.19, 871–885 (1982)

    Article  Google Scholar 

  9. Federer, H.: Geometric measure theory. Berlin Heidelberg New York: Springer 1969

    Google Scholar 

  10. Fortin, M.: Old and new elements for incompressible flows. Int. J. Numer. Methods Fluids1, 347–364 (1981)

    Google Scholar 

  11. Girault, V., Raviart, P.-A.: Finite element approximation of the Navier-Stokes equations. Lect. Notes Math. 749. Berlin Heidelberg New York: Springer 1979

    Google Scholar 

  12. Grisvard, P.: Singularitè des solutions du problème de Stokes dans un polygone. Publications de l'Université de Nice 1978

  13. Hasbani, Y., Livne, E., Bercovier, M.: Finite elements and characteristics applied to advectiondiffusion equations. Comput. Fluids11, 71–83 (1983)

    Article  Google Scholar 

  14. Heywood, J.G.: The Navier-Stokes equations: on existence, regularity and decay of solutions. Indiana Univ Math. J.29, 639–681 (1980)

    Article  Google Scholar 

  15. Lefschetz, S.: Differential equations: Geometric theory: New York: Dover Publications 1977

    Google Scholar 

  16. López-Marcos, J.C., Sanz-Serna, J.M.: Stability and convergence in numerical analysis III: Linear investigation of nonlinear stability. IMA J. Numer. Anal.8, 71–84 (1987)

    Google Scholar 

  17. Mansfield, L.: Finite element subspaces with optimal rates of convergence for the stationary Stokes problem. RAIRO Anal. Numér.16, 49–66 (1982)

    Google Scholar 

  18. Maz'ya, V.G.: Sobolev spaces. Berlin Heidelberg New York: Springer 1985

    Google Scholar 

  19. Morton, K. W., Priestley, A., Süli, E.: Convergence analysis of the Lagrange-Galerkin method with non-exact integration. Oxford University Computing Laboratory Report. No 86/14 (1986)

  20. Pironneau, O.: On the transport-diffusion algorithm and its application to the Navier-Stokes equations. Numer. Math.38, 309–332 (1982)

    Article  Google Scholar 

  21. Russell, T.F.: Time stepping along characteristics with incomplete iteration for a Galerkin approximation of miscible displacement in porous media. Ph.D. Thesis. University of Chicago 1980

  22. Stenberg, R.: Analysis of some mixed finite elements methods for the Stokes problem: A unified approach. Math. Comput.42, 9–23 (1984)

    Google Scholar 

  23. Stenberg, R.: On some three-dimensional finite elements for incompressible media. Comput. Methods Appl. Mech. Engrg.63, 261–269 (1987)

    Article  Google Scholar 

  24. Süli, E.: Lagrange-Galerkin mixed finite element approximation of the Navier-Stokes equations. In: K.W. Morton, M.J. Baines (eds.), Numerical methods for fluid dynamics, pp. 439–448. Oxford University Press (1985)

    Google Scholar 

  25. Süli, E.: Convergence analysis of the Lagrange-Galerkin method for the Navier-Stokes equations. Oxford University Computing Laboratory Report. No 86/3 (1986)

  26. Süli, E.: Stability and convergence of the Lagrange-Galerkin method with non-exact integration. In: J.R. Whiteman (ed.) The mathematics of finite elements and applications, pp. 435–442. New York: Academic Press (1988)

    Google Scholar 

  27. Temam, R.: Navier-Stokes Equations. Theory and numerical analysis. Amsterdam: North-Holland 1977

    Google Scholar 

  28. Zlámal, M.: Curved elements in the finite element method. I. SIAM J. Numer. Anal.10, 229–240 (1973)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Süli, E. Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations. Numer. Math. 53, 459–483 (1988). https://doi.org/10.1007/BF01396329

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01396329

Subject Classifications

Navigation