Skip to main content
Log in

Product integration for the linear transport equation in slab geometry

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

In this paper we present a product quadrature rule for the discretization of the well-known linear transport equation in slab geometry. In particular we give an algorithm for constructing the weights of the rule and prove that the order of convergence isO(n −3+δ), δ>0 small as we like. Numerical examples are given, and our formula is also compared with product Simpson rules. Finally, we examine a Nyström method based on our quadrature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. N.B.S. Appl. Math. Ser. No. 55, Washington D.C., 1964

  2. Abu-Shumays, I.K., Bareiss, E.H.: Adjoining appropriate singular elements to transport theory computations. J. Math. Anal. Appl.48, 200–222 (1974)

    Article  Google Scholar 

  3. Atkinson, K.E.: A survey of numerical methods for the solution of Fredholm integral equations of the second kind. Philadelphia: SIAM 1976

    Google Scholar 

  4. Baker, C.T.H.: The numerical treatment of integral equations. Oxford: Clarendon Press 1977

    Google Scholar 

  5. Bell, G.I., Glasstone, S.: Nuclear reactor theory. New York: Van Nostrand Reinhold Company 1970

    Google Scholar 

  6. Bennett, J.H.: Integral equation methods for transport problems-some numerical results. Numer. Math.6, 49–54 (1964)

    Google Scholar 

  7. Busbridge, I.W.: The mathematics of radiative transfer. Cambridge: Cambridge University Press 1960

    Google Scholar 

  8. Chandler, G.A.: Superconvergence of numerical solutions to second kind integral equations. Ph.D. Thesis, Australian National University, Canberra, 1979

    Google Scholar 

  9. Delves, L.M., Abd-Elal, L.F., Hendry, J.A.: A fast Galerkin algorithm for singular integral equation. J. Inst. Math. Appl.23, 139–166 (1979)

    Google Scholar 

  10. Elliott, D.: Uniform asymptotic expansions of the Jacobi polynomials and an associated function. Math. Comput.25, 309–315 (1971)

    Google Scholar 

  11. Graham, I.G.: Galerkin methods for second kind integral equations with singularities. Math. Comput.39, 519–533 (1982)

    Google Scholar 

  12. Kaper, H.G., Kellog, R.B.: Asymptotic behavior of the solution of the integral transport equation in slab geometry. SIAM J. Appl., Math.32, 191–200 (1977)

    Google Scholar 

  13. Kaper, H.G., Kellog, R.B.: Continuity and differentiability properties of the solution of the linear transport equation. SIAM J. Appl. Math.32, 201–214 (1977)

    Article  Google Scholar 

  14. Kaper, H.G., Leaf, G.K., Lindeman, J.: Formulation of a Ritz-Galerkin type procedure for the approximate solution of the neutron transport equation. J. Math. Anal. Appl.50, 42–65 (1975)

    Article  Google Scholar 

  15. Kourganoff, V.: Basic methods in transfer problems. London: Oxford University Press 1952

    Google Scholar 

  16. Küntz, M.: Asymptotic error bounds for a class of interpolatory quadratures. SIAM J. Numer. Anal.21, 167–175 (1984)

    Article  Google Scholar 

  17. Luke Y.L.: Mathematical functions and their approximations. New York: Academic Press 1975

    Google Scholar 

  18. Pitkäranta, J.: On the differential properties of solutions to Fredholm equations with weakly singular kernels. J. Inst. Math. Appl.24, 109–119 (1979)

    Google Scholar 

  19. Rice, J.R.: On the degree of convergence of nonlinear spline approximation. In: Approximations with special emphasis on spline functions. Schoenberg, I.J. (ed.). New York: Academic Press 1969

    Google Scholar 

  20. Schneider, C.: Product integration for weakly singular integral equations. Math. Comput.36, 207–213 (1981)

    Google Scholar 

  21. Sloan, I.H.: Analysis of general quadrature methods for integral equations of the second kind. Numer. Math.38, 263–278 (1981)

    Google Scholar 

  22. Smith, W.E., Sloan, I.H.: Product-integration rules based on the zeros of Jacobi polynomials. SIAM J. Numer. Anal.17, 1–13 (1980)

    Article  Google Scholar 

  23. Spence, A.: Product integration for singular integrals and singular integral equations. In: Numerische Integration. Hämmerlin, G. (ed.), ISNM 45, pp. 288–300. Basel: Birkhäuser 1979

    Google Scholar 

  24. Szegö, G.: Orthogonal polynomials. Am. Math. Soc. Colloquium Publications. Vol. 23, Providence, R.I. 1975

  25. Vainikko, G., Uba, P.: A piecewise polynomial approximation to the solution of an integral equation with weakly singular kernel. J. Aust. Math. Soc. Ser. B,22, 431–438 (1981)

    Google Scholar 

  26. Whittaker, E.T., Watson, C.N.: A course of modern analysis. Cambridge: Cambridge University, Press 1978

    Google Scholar 

  27. Andrew, A.J.: Eigenvectors of certain matrices. Linear Algebra Appl.7, 151–162 (1973)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work sponsored by the “Ministero della Pubblica Instruzione” of Italy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monegato, G., Colombo, V. Product integration for the linear transport equation in slab geometry. Numer. Math. 52, 219–240 (1988). https://doi.org/10.1007/BF01398690

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01398690

Subject Classifications

Navigation