Skip to main content
Log in

Geometric quantization and multiplicities of group representations

  • Published:
Inventiones mathematicae Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Atiyah, M.F.: Convexity and commuting Hamiltonians. Bull. Lon. Math. Soc. 14 (1982) 1–15

    Google Scholar 

  2. Boutet de Monvel, L., Sjöstrand, J.: Sur la singularité des noyaux de Bergmann et de Szegö. Asterisque34–35, 123–164 (1976)

    Google Scholar 

  3. Boutet de Monvel, L., Guillemin, V.: The spectral theory of toeplitz operators. Annals of Math. Studies Vol. 99. Princeton, NJ: Princeton University Press 1981

    Google Scholar 

  4. Guillemin, V., Sternberg, S.: Some problems in integral geometry and some related problems in micro-local analysis. Am. J. Math.101, 915–955 (1979)

    Google Scholar 

  5. Guillemin, V., Sternberg, S.: Convexity properties of the moment mapping. Invent. Math. in press (1982)

  6. Heckman, G.: Projections of orbits and asymptotic behavior of multiplicities for compact Lie groups. Thesis, Leiden (1980)

  7. Hörmander, L.: Fourier integral operators I. Acta Math.127, 79–183 (1972)

    Google Scholar 

  8. Kempf, G., Ness, L.: The length of vectors in representation space. Lect. notes in Math. 732 (1979). Springer-Verlag

  9. Kobayashi, S.: Geometry of bounded domains. Trans. Amer. Math. Soc.92, 267–290 (1959)

    Google Scholar 

  10. Kostant, B.: Orbits, symplectic structures, and representation theory. Proc. US-Japan Seminar in Differential Geometry, Kyoto, (1965), Nippon Hyoronsha, Tokyo, 1966

    Google Scholar 

  11. Kostant, B.: Quantization and unitary representations. In: Modern analysis and applications. Lecture Notes in Math., Vol. 170, pp. 87–207. Berlin-Heidelberg-New York: Springer 1970

    Google Scholar 

  12. Marsden, J., Weinstein, A.: Reduction of symplectic manifolds with symmetry. Reports on Math. Phys.5, 121–130 (1974)

    Google Scholar 

  13. Melin, A., Sjöstrand, J.: Fourier integral operators with complex phase functions. In: Fourier integral operators and partial differential equations. Lecture Notes, vol. 459. pp. 120–223. Berlin-Heidelberg-New York: Springer 1975

    Google Scholar 

  14. Mumford, D.: Geometric invariant theory. Ergebnisse der Math., Vol. 34. Berlin-Heidelberg-New York: Springer 1965

    Google Scholar 

  15. Simms, D., Woodhouse, N.: Lectures on geometric quantization. Lectures Notes in Physics, Vol. 53. Berlin-Heidelberg-New York: Springer 1976

    Google Scholar 

  16. Weinstein, A.: Lectures on symplectic manifolds, AMS, Regional Conference in Mathematics Series, Vol. 29, AMS, Providence, R.I. 1976

    Google Scholar 

  17. Weinstein, A.: Symplectic geometry. Bull. Am. Math. Soc.5, 1–13 (1981)

    Google Scholar 

  18. Atiyah, M., Singer, I.M.: The index of elliptic operators, III. Ann. of Math.87, 546–604 (1968)

    Google Scholar 

  19. Kawasaki, T.: The Riemann-Roch theorem for complexV-manifolds. Osaka Journal of Math.16, 151–159 (1979)

    Google Scholar 

  20. Satake, I.: On a generalization of the notion of manifold. Proc. Nat. Acad. Sci. USA42, 359–363 (1956)

    Google Scholar 

  21. Weinstein, A.: SymplecticV-manifolds, periodic orbits of Hamiltonian systems and the volume of certain Riemann manifolds. Comm. Pure and App. Math.30, 265–271 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guillemin, V., Sternberg, S. Geometric quantization and multiplicities of group representations. Invent Math 67, 515–538 (1982). https://doi.org/10.1007/BF01398934

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01398934

Keywords

Navigation