Skip to main content
Log in

Extraneous fixed points, basin boundaries and chaotic dynamics for Schröder and König rational iteration functions

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

The Schröder and König iteration schemes to find the zeros of a (polynomial) functiong(z) represent generalizations of Newton's method. In both schemes, iteration functionsf m (z) are constructed so that sequencesz n+1 =f m (z n ) converge locally to a rootz * ofg(z) asO(|z n z *|m). It is well known that attractive cycles, other than the zerosz *, may exist for Newton's method (m=2). Asm increases, the iteration functions add extraneous fixed points and cycles. Whether attractive or repulsive, they affect the Julia set basin boundaries. The König functionsK m (z) appear to minimize such perturbations. In the case of two roots, e.g.g(z)=z 2−1, Cayley's classical result for the basins of attraction of Newton's method is extended for allK m (z). The existence of chaotic {z n } sequences is also demonstrated for these iteration methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors, L.: Complex analysis (3rd ed.) New York: McGraw-Hill 1979

    Google Scholar 

  2. Barna, B.: Über die Divergenzpunkte des Newtonschen Verfahrens zur Bestimmung von Wurzeln algebraischer Gleichungen II. Publications Mathematicae Debrecen4, 384–397 (1956)

    Google Scholar 

  3. Blanchard, P.: Complex analytic dynamics on the Riemann sphere. Bull. Amer. Math. Soc.11, 85–141 (1984)

    Google Scholar 

  4. Brolin, H.: Invariant sets under iteration of rational functions. Ark. Math.6, 103–144 (1966)

    Google Scholar 

  5. Cayley, A.: Application of the Newton-Fourier method to an imaginary root of an equation. Quart. J. Pure Appl. Math.16, 179–185 (1879). Sur les racines d'une équation algebraique. C.R. Acad. Sci.110, 215–218 (1890)

    Google Scholar 

  6. Curry, J.H., Garnett, L., Sullivan, D.: On the iteration of a rational function: computer experiments with Newton's method. Commun. Math. Phys.91, 267–277 (1983)

    Google Scholar 

  7. Devaney, R.: An introduction to chaotic dynamical systems. Menlo Park, CA: Benjamin/Cummings (1986)

    Google Scholar 

  8. Douady, A., Hubbard, J.: Itération des polynômes quadratiques complexes. C.R. Acad. Sci. Paris294, 123–126 (1982)

    Google Scholar 

  9. Douady, A., Hubbard, J.: On the dynamics of polynomial-like mappings. Ann. Sci. Ec. Norm. Sup. Paris18, 287–343 (1985)

    Google Scholar 

  10. Falconer, K.J.: The geometry of fractal sets. Cambridge Univ. Press (1985)

  11. Fatou, P.: Sur les equations fonctionelles. Bull. Soc. Math. France47, 161–271 (1919);48, 33–94, 208–314 (1920)

    Google Scholar 

  12. Feigenbaum, M.: Quantative universality for a class of nonlinear transformations. J. Stat. Phys.19, 25–52 (1978)

    Google Scholar 

  13. Henrici, P.: Applied and computational complex analysis, vol. 1. New York: Wiley (1974)

    Google Scholar 

  14. Howland, J.L., Vaillancourt, R.: Attractive cycles in the iteration of meromorphic functions. Num. Math.46, 323–337 (1985)

    Google Scholar 

  15. Householder, A.S.: Principles of numerical analysis. New York: McGraw-Hill (1953)

    Google Scholar 

  16. Hurley, M., Martin, C.: Newton's algorithm and chaotic dynamical systems. SIAM J. Math. Anal.15, 238–252 (1984)

    Google Scholar 

  17. Julia, G.: Memoire sur l'itération des fonctions rationelles. J. Math. Pures Appl.4, 47–245 (1918)

    Google Scholar 

  18. Mandelbrot, B.: Fraetal aspects ofz→λz(1−z) for complex λ andz. Ann. N.Y. Acad. Sci.357, 249–259 (1985)

    Google Scholar 

  19. Mandelbrot, B.: Fractal geometry of nature, San Francisco: W.H. Freeman (1983)

    Google Scholar 

  20. Peitgen, H.O., Richter, P.: The beauty of fractals, Images of complex dynamical systems. Berlin, Heidelberg, New York: Springer-Verlag (1986)

    Google Scholar 

  21. Saari, D.G., Urenko, J.B.: Newton's method, circle maps, and chaotic motion. Amer. Math. Monthly91, 3–17 (1984)

    Google Scholar 

  22. Schröder, E.: Über unendlich viele Algorithmen zur Auflösung der Gleichungen. Math. Ann.2, 317–364 (1870)

    Google Scholar 

  23. Smyth, W.F.: The construction of rational iterating functions. Math. Comput.32, 811–827 (1978)

    Google Scholar 

  24. Vrscay, E.R.: Julia sets and Mandelbrot-like sets associated with higher order Schröder rational iteration functions. Math. Comput.46, 151–169 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vrscay, E.R., Gilbert, W.J. Extraneous fixed points, basin boundaries and chaotic dynamics for Schröder and König rational iteration functions. Numer. Math. 52, 1–16 (1987). https://doi.org/10.1007/BF01401018

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01401018

Subject classifications

Navigation