Skip to main content
Log in

Fourier coefficients of cusp forms

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Let ψ123,... be an orthonormal basis of the space of cusp forms of weight zero for the full modular group. Let

be the Fourier series expansion. The following theorem is proved: Let σ∈(1/4, 1/2); letf be a holomorphic function on the strip |Res|≦σ, satisfyingf(−s)=f(s) and

$$f(s) = \mathcal{O}(|\tfrac{1}{4} - s^2 |^{ - 2} |cos \pi s|^{ - 1} )$$

on this strip; letm andn be non-zero integers, then

$$\sum\limits_{j = 1}^\infty {f(s_j )\bar \gamma _{jm} \gamma _{jn} } $$

converges and is equal to

$$\begin{gathered} - (2\pi i)^{ - 1} \int\limits_{\operatorname{Re} s = 0} {f(s)c_{00} ( - s)c_{0|m|} (s)c_{0|n|} (s)ds} \hfill \\ + (2\pi i)^{ - 1} (4\pi |m|)^{ - 1} \int\limits_{\operatorname{Re} s = 0} {f(s)c_{mn} (s)2sds} \hfill \\ - \delta _{mn} (2\pi i)^{ - 1} (4\pi |m|)^{ - 1} \int\limits_{\operatorname{Re} s = 0} {f(s)\sin \pi s2sds.} \hfill \\ \end{gathered} $$

The functionsc 00(s) andc 0|m|(s) are coefficients occurring in the Fourier series expansion of the Eisenstein series; the functionc mn(s) is a coefficient in the Fourier series expansion of a Poincaré series.

The theorem is applied to obtain some asymptotic results concerning the Fourier coefficients γjn. Under additional conditions on the functionf the formula in the theorem is modified in such a way that the Fourier coefficients of holomorphic cusp forms appear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duflo, M., Labesse, J.-P.: Sur la formule des traces de Selberg; Ann. scient. Ec. Norm. Sup. 4e série, t.4, 193–284 (1971)

    Google Scholar 

  2. Faddeev, L.: Expansion in eigenfunctions of the Laplace operator on the fundamental domain of a discrete group on the Lobacevskii plane; A.M.S. Transl. Trudy 357–386 (1967)

  3. Hejhal, D.A.: The Selberg trace formula and the Riemann zeta function; Duke Math. J.43, 441–482, 1976

    Google Scholar 

  4. Kubota, T.: Elementary theory of Eisenstein series; New York: Halsted Press 1973

    Google Scholar 

  5. Lang, S.:SL 2(R);Reading (Mass.): Addison-Wesley 1975

    Google Scholar 

  6. Lehner, J.: Discontinuous groups and automorphic functions; A.M.S., Providence (R.I.), 1964

    Google Scholar 

  7. Maass, H.: Lectures on modular functions of one complex variable; Bombay: Tata Inst. of Fund. Research 1964

    Google Scholar 

  8. Neunhöffer, H.: Über die analytische Fortsetzung von Poincaréreihen; Sitzungsb. der Heidelberger Ak. der Wiss., Mathematisch-naturwiss. Klasse, 2. Abhandlung 1973

  9. Niebur, D.: A class of nonanalytic automorphic functions; Nagoya Math. J.52, 133–145 (1973)

    Google Scholar 

  10. Petersson, H.: Über die Entwicklungskoeffizienten der automorphen Formen, Acta Math.58, 169–215 (1932)

    Google Scholar 

  11. Salié, H.: Über die Kloostermanschen SummenS(u, v; q); Math. Z.34, 91–109 (1931)

    Google Scholar 

  12. Satake, I.: Spherical Functions and Ramanujan Conjecture; Proc. Symp. Pure Math. IX, A.M.S., Providence (R.I.), p. 258–264, 1966

  13. Titchmarsh, E.C.: The theory of the Riemann zeta function; Oxford: Clarendon Press 1951

    Google Scholar 

  14. Watson, G.N.: A treatise on the theory of Bessel functions; Cambridge: University Press, 1966 (second edition)

    Google Scholar 

  15. Weil, A.: On some exponential sums; Proc. Nat. Acad. Sci. U.S.A.34, 204–207 (1948)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruggeman, R.W. Fourier coefficients of cusp forms. Invent Math 45, 1–18 (1978). https://doi.org/10.1007/BF01406220

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01406220

Key Words

Navigation