Skip to main content
Log in

The finite element method with Lagrangian multipliers

Numerische Mathematik Aims and scope Submit manuscript

Summary

The Dirichlet problem for second order differential equations is chosen as a model problem to show how the finite element method may be implemented to avoid difficulty in fulfilling essential (stable) boundary conditions. The implementation is based on the application of Lagrangian multiplier. The rate of convergence is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Babuška, I.: The stability of the domain of definition with respect to basic problems of the theory of partial differential equations, especially with respect to the theory of elasticity I, II. Czechoslovak Math. J. 76–105, 165–203 (1961).

  2. Babuška, I.: Numerical solution of boundary value problems by perturbed variational principle. Technical Note BN-627 (1969), Institute for Fluid Dynamics and Applied Mathematics, University of Maryland.

  3. Babuška, I.: The finite element method for elliptic equations with discontinuous coefficients. Computing5, 207–213 (1970).

    Google Scholar 

  4. Babuška, I.: Approximation by Hill functions. Commentations Math. Univ. Carolinae,11, 387–811 (1970).

    Google Scholar 

  5. Babuška, I.: Finite element method for domains with corners. Computing6, 264–273 (1970).

    Google Scholar 

  6. Babuška, I.: The finite element method for elliptic differential equations. Numerical solution of partial differential equations II. SYNSPADE 1970, edited by B. Hubbard. New York, London: Academic Press 1971 (69–107).

    Google Scholar 

  7. Babuška, I.: A remark to the finite element method. Commentations Math. Univ. Carolinae12, 367–376 (1971).

    Google Scholar 

  8. Babuška, I.: The rate of convergence for the finite element method. SIAM J. Num. Anal.8, 304–315 (1971).

    Google Scholar 

  9. Babuška, I.: Error bound for finite element method. Num. Math.16, 322–333 (1971).

    Google Scholar 

  10. Babuška, I.: Finite element method with penalty. Technical Note BN-710 (1971), Institute for Fluid Dynamics and Applied Mathematics, University of Maryland.

  11. Babuška, I.: Approximation by Hill functions II. Technical Note BN-708 (1971), Institute for Fluid Dynamics and Applied Mathematics, University of Maryland.

  12. Babuška, I.: The finite element method for infinite domains I. Technical Note BN-670 (1970), Institute for Fluid Dynamics and Applied Mathematics, University of Maryland. To appear in Math of Comp.

  13. Babuška, I., Rosenzweig, M. B.: A finite element scheme for domains with corners. Technical Note BN-720 (1971), Institute for Fluid Dynamics and Applied Mathematics, University of Maryland.

  14. Bramble, J. H., Schatz, A. H.: On the numerical solution of elliptic boundary value problems by least square approximation of the data. Numerical solution of partial differential equations II. SYNSPADE 1970, edited by B. Hubbard. New York, London: Academic Press 1971 (107–133).

    Google Scholar 

  15. Bramble, J. H., Zlámal, M.: Triangular elements in the finite element method. Math. of Comp. 809–821 (1970).

  16. Fix, G., Strang, G.: A Fourier analysis of the finite element variational method. To appear.

  17. Gallagher, R. H.: Trends and directions in the applications of Numerical analysis. ONR Symposium on numerical and computer methods in structural mechanics, University of Ill., September 8–10, 1971.

  18. Nitsche, J.: Über Variationsprinzip für Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. To appear.

  19. Elsgolc, L. E.: Calculus of variations. London, Paris, Frankfurt: Pergamon Press 1961.

    Google Scholar 

  20. Krein, S. G., Petunin, Yu I.: Scales of Banach spaces. Russian Math. Surveys21, 85–160 (1966).

    Google Scholar 

  21. Lions, J. L., Magenes, E.: Problèmès aux limites non homogènes et applications. Vol. 1, Paris: Dunod 1968.

    Google Scholar 

  22. Rashid, Y. R.: On computational methods in solid mechanics and stress analysis. Conf. on the effective use of computers in the nuclear industry, April 21–23, 1969, Knoxville.

  23. Slobodeckii, M. I.: Generalized Sobolev spaces and their applications to boundary problems for partial differential equations. Am. Math. Soc. Transl.21, 207–275 (1966).

    Google Scholar 

  24. Strang, G.: The finite element method and approximation theory. Numerical solution of partial differential equations II. SYNSPADE 1970, edited by B. Hubbard. New York, London: Academic Press 1971 (547–585).

    Google Scholar 

  25. Washizu, K.: Variational methods in elasticity and plasticity. Pergamon Press 1968.

  26. Zlámal, M.: On the finite element method. Numer. Math.12, 394–409 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper was supported by the Atomic Energy Commission under Contract No. AEC AT (40-1) 3443/4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babuška, I. The finite element method with Lagrangian multipliers. Numer. Math. 20, 179–192 (1973). https://doi.org/10.1007/BF01436561

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01436561

Keywords

Navigation