Skip to main content
Log in

Stochastic variational inequalities of parabolic type

  • Published:
Applied Mathematics and Optimization Submit manuscript

Abstract

Existence and uniqueness of strong solutions of stochastic partial differential equations of parabolic type with reflection (e.g., the solutions are never allowed to be negative) is proved. The problem is formulated as a stochastic variational inequality and then compactness is used to derive the result, but the method requires the space dimension to be one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Bensoussan and J. L. Lions, Applications of Variational Inequalities in Stochastic Control, North-Holland, Amsterdam, 1982.

    Google Scholar 

  2. H. Brézis, Problèmes unilatéraux, J. Math. Pures Appl. 51 (1972), 1–164.

    Google Scholar 

  3. G. Duvaut and J. L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris, 1972.

    Google Scholar 

  4. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1977.

    Google Scholar 

  5. N. V. Krylov and B. L. Rozovskii, On the Cauchy problem for linear stochastic partial differential equations, Math USSR-Izv. 11 (1977), 1267–1284.

    Google Scholar 

  6. J. L. Lions, Quelques méthodes de résolution des problèmes aux limites nonlinéaires, Dunod, Gauthier-Villars, Paris, 1969.

    Google Scholar 

  7. J. L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math 20 (1967), 493–519.

    Google Scholar 

  8. P. L. Lions and A. S. Sznitman, Stochastic differential equations with reflecting boundary conditions, Comm. Pure Appl. Math. 37 (1984), 511–537.

    Google Scholar 

  9. J. L. Menaldi, Stochastic variational inequality for reflected diffusion, Indiana Math. J. 32 (1983), 733–744.

    Google Scholar 

  10. M. Métivier, Semimartingales, de Gruyter, Berlin, 1982.

    Google Scholar 

  11. E. Pardoux, Equations aux derivées partielles stochastiques nonlinéaires monotones, Thèse, Paris-Sud, Orsay, 1975.

    Google Scholar 

  12. E. Pardoux, Stochastic partial differential equations and filtering of diffusion processes, Stochastics 3 (1979), 127–167.

    Google Scholar 

  13. A. Rascanu, Existence for a class of stochastic parabolic variational inequalities, Stochastics 5 (1981), 201–239.

    Google Scholar 

  14. A. Rascanu, On some stochastic parabolic variational inequalities, Nonlinear Anal. Theory Meth. Applic. 6 (1982), 75–94.

    Google Scholar 

  15. Y. Saisho, Stochastic differential equations for multi-dimensional domain with reflection, Probab. Theory Rel. Fields 74 (1987), 455–477.

    Google Scholar 

  16. D. W. Stroock and S. R. S. Varadhan, Diffusion processes with boundary conditions, Comm. Pure Appl. Math. 24 (1971), 147–225.

    Google Scholar 

  17. H. Tanaka, Stochastic differential equations with reflecting boundary conditions in convex regions, Hiroshima Math. J. 9 (1979), 163–177.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Bensoussan

This research was supported by NSERC under Grant No. 8051.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haussmann, U.G., Pardoux, E. Stochastic variational inequalities of parabolic type. Appl Math Optim 20, 163–192 (1989). https://doi.org/10.1007/BF01447653

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01447653

Keywords

Navigation