Skip to main content
Log in

On finite-difference methods for the Korteweg-de Vries equation

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Summary

The purpose of this paper is to set up and analyse difference schemes for solving the initial-value problem for the socalled Korteweg-de Vries equation. After the discussion of a difference scheme which is correctly centered in both space and time, the construction of difference schemes which implicitly contain the effect of dissipation is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves,Philos. Mag., 39 (1895) 422–443.

    Google Scholar 

  2. C. S. Gardner and G. K. Morikawa, Similarity in the asymptotic behaviour of collision-free hydromagnetic waves and water waves, New York Univ.,Courant Inst. Math. Sci., Res. Report NYO-9082, 1960.

  3. H. Washimi and T. Taniuti, Propagation of ion-acoustic solitary waves of small amplitude,Phys. Rev. Letters, 17 (1966) 996–998.

    Google Scholar 

  4. M. D. Kruskal, Asymptotology in numerical computation: progress and plans on the Fermi-Pasta-Ulam problem,Proceedings of the IBM Scientific Computing Symposium on Large-Scale Problems in Physics (1965).

  5. N. J. Zabusky, A synergetic approach to problems of nonlinear dispersive wave propagation and interaction,Nonlinear Partial Differential Equations, Academic Press, New York (1967).

    Google Scholar 

  6. L. van Wijngaarden, Linear and non-linear dispersion of pressure pulses in liquid-bubble mixtures,6th Symposium on Naval Hydrodynamics, Washington D.C. (1966).

  7. L. van Wijngaarden, On the equations of motion for mixtures of liquid and gas bubbles,J. Fluid Mech., 33 (1968) 465–474.

    Google Scholar 

  8. A. Sjöberg,On the Korteweg-de Vries equation, Uppsala Univ., Dept. of Computer Sci., Report, 1967.

  9. P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves,Comm. Pure Appl. Math., 21 (1968) 467–490.

    Google Scholar 

  10. L. J. F. Broer, On the interaction of non-linearity and dispersion in wave propagation: II. Approximate solutions of the reduced Boussinesq equation,Appl. sci. Res., Section B, 12 (1965) 113–129.

    Google Scholar 

  11. H. W. Hoogstraten,On non-linear dispersive water waves, Doctoral Thesis, Delft University of Technology (1968).

  12. C. S. Gardner, J. M. Greene, M. D. Kruskal and R. M. Miura, Method for solving the Korteweg-de Vries equation,Phys. Rev. Letters, 19 (1967) 1095–1097.

    Google Scholar 

  13. N. J. Zabusky and M. D. Kruskal, Interaction of “solitons” in a collisionless plasma and the recurrence of initial states,Phys. Rev. Letters, 15 (1965) 240–243.

    Google Scholar 

  14. P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation,Comm. Pure Appl. Math., 7 (1954) 159–193.

    Google Scholar 

  15. P. D. Lax and B. Wendroff, Systems of conservation laws,Comm. Pure Appl. Math., 13 (1960) 217–237.

    Google Scholar 

  16. D. H. Peregrine, Calculations of the development of an undular bore,J. Fluid Mech., 25, 2 (1966) 321–330.

    Google Scholar 

  17. N. A. Phillips, Numerical weather prediction,Advances in Computers, Vol. 1, Academic Press, New York (1960).

    Google Scholar 

  18. A. C. Vliegenthart, Dissipative difference schemes for shallow water equations,J. Eng. Maths., 3 (1969) 81–94.

    Google Scholar 

  19. K. V. Roberts and N. O. Weiss, Convective difference schemes,Math. Computation, 20 (1966) 94.

    Google Scholar 

  20. R. D. Richtmyer and K. W. Morton,Difference methods for initial-value problems, Second Edition, Interscience Publishers, New York (1967).

    Google Scholar 

  21. J. J. Leendertse,Aspects of a computational model for long-period water-wave propagation, Doctoral Thesis, Delft University of Technology (1967).

  22. L. J. F. Broer, On the interaction of non-linearity and dispersion in wave propagation: I. Boussinesq's equation,Appl. sci. Res., Section B, 11 (1965) 273–285.

    Google Scholar 

  23. J. C. P. Miller,The Airy integral, British Assoc. Adv. Sci. Math. Tables, Part-vol. B, Cambridge Univ. Press, Cambridge (1946).

    Google Scholar 

  24. M. Abramowitz and I. A. Stegun,Handbook of mathematical functions, Dover Publications, Inc., New York.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vliegenthart, A.C. On finite-difference methods for the Korteweg-de Vries equation. J Eng Math 5, 137–155 (1971). https://doi.org/10.1007/BF01535405

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01535405

Keywords

Navigation