Skip to main content
Log in

A theory of tensor products for module categories for a vertex operator algebra, I

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

This is the first part in a series of papers developing a tensor product theory for modules for a vertex operator algebra. The goal of this theory is to construct a “vertex tensor category” structure on the category of modules for a suitable vertex operator algebra. The notion of vertex tensor category is essentially a “complex analogue” of the notion of symmetric tensor category, and in fact a vertex tensor category produces a braided tensor category in a natural way. The theory applies in particular to many familiar “rational” vertex operator algebras, including those associated with WZNW models, minimal models and the moonshine module. In this paper (Part I), we introduce the notions ofP(z)- andQ(z)-tensor product, whereP(z) andQ(z) are two special elements of the moduli space of spheres with punctures and local coordinates, and we present the fundamental properties and constructions ofQ(z)-tensor products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. A. Belavin, A. M. Polyakov and A. B. Zamolodchikov.Infinite conformal symmetries in two-dimensional quantum field theory. Nucl. Phys.,B241 (1984), 333–380.

    Article  MathSciNet  Google Scholar 

  2. R. E. Borcherds.Vertex algebras, Kac-Moody algebras, and the Monster. Proc. Natl. Acad. Sci. USA83 (1986), 3068–3071.

    Article  MathSciNet  Google Scholar 

  3. R. E. Borcherds.Monstrous moonshine and monstrous Lie superalgebras. Invent. Math.109 (1992), 405–444.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. H. Conway and S. P. Norton.Monstrous moonshine. Bull. London Math. Soc.,11 (1979), 308–339.

    Article  MATH  MathSciNet  Google Scholar 

  5. C. Dong.Representations of the moonshine module vertex operator algebra. in: Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups, Proc. Joint Summer Research Conference, Mount Holyoke, 1992, ed. P. Sally, M. Flato, J. Lepowsky, N. Reshetikhin and G. Zuckerman, Contemporary Math., Vol. 175, Amer. Math. Soc., Providence, 1994, 27–36.

    Google Scholar 

  6. C. Dong and J. Lepowsky.Generalized Vertex Algebras and Relative Vertex Operators. Progress in Math., Vol.112 Birkhäuser, Boston, 1993.

    Google Scholar 

  7. V. Drinfeld.On quasi-cocommutative Hopf algebras. Algebra and Analysis1 (1989), 30–46.

    MathSciNet  Google Scholar 

  8. V. Drinfeld.On quasitriangular quasi-Hopf algebras and a certain group closely related to Gal. Algebra and Analysis2 (1990), 149–181.

    MathSciNet  Google Scholar 

  9. M. Finkelberg.Fusion categories. Ph.D. thesis, Harvard University, 1993.

  10. I. B. Frenkel, Y.-Z. Huang and J. Lepowsky.On axiomatic approaches to vertex operator algebras and modules. preprint, 1989; Memoirs Amer. Math. Soc.104, 1993.

  11. I. B. Frenkel, J. Lepowsky and A. Meurman.A natural representation of the Fischer-Griess Monster with the modular function J as character. Proc. Natl. Acad. Sci. USA81 (1984), 3256–3260.

    Article  MATH  MathSciNet  Google Scholar 

  12. I. B. Frenkel, J. Lepowsky and A. Meurman.Vertex Operator Algebras and the Monster, Pure and Appl. Math., Vol. 134, Academic Press, Boston, 1988.

    Google Scholar 

  13. I. B. Frenkel and Y. Zhu.Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J.66 (1992), 123–168.

    Article  MATH  MathSciNet  Google Scholar 

  14. D. Friedan and S. Shenker.The analytic geometry of two-dimensional conformal field theory. Nucl. Phys.B281 (1987), 509–545.

    Article  MathSciNet  Google Scholar 

  15. M. Gaberdiel.Fusion in conformal field theory as the tensor product of the symmetry algebra. preprint, 1993.

  16. Y.-Z. Huang.On the geometric interpretation of vertex operator algebras. Ph.D. thesis, Rutgers University, 1990.

  17. Y.-Z. Huang.Geometric interpretation of vertex operator algebras. Proc. Natl. Acad. Sci. USA88 (1991), 9964–9968.

    Article  MATH  Google Scholar 

  18. Y.-Z. Huang.Applications of the geometric interpretation of vertex operator algebras. in: Proc. 20th International Conference on Differential Geometric Methods in Theoretical Physics, New York, 1991, ed. S. Catto and A. Rocha, World Scientific, Singapore, 1992, Vol. 1, 333–343.

    Google Scholar 

  19. Y.-Z. Huang.Vertex operator algebras and conformal field theory. Intl. J. Mod. Phys.A7 (1992), 2109–2151.

    Article  Google Scholar 

  20. Y.-Z. Huang.Two-dimensional conformal geometry and vertex operator algebras. Birkhäuser, Boston, to appear.

  21. Y.-Z. Huang.A theory of tensor products for module categories for a vertex operator algebra, IV. J. Pure Appl. Alg.100 (1995), 173–216.

    Article  MATH  Google Scholar 

  22. Y.-Z. Huang.A nonmeromorphic extension of the moonshine module vertex operator algebra. in: Moonshine, the Monster and Related Topics, Proc. Joint Summer Research Conference, Mount Holyoke, 1994, ed. C. Dong and G. Mason, Contemporary Math., Amer. Math. Soc., Providence, 1995, 123–148.

  23. Y.-Z. Huang.Virasoro vertex operator algebras, the (nonmeromorphic) operator product expansion and the tensor product theory. J. Alg., to appear.

  24. Y.-Z. Huang and J. Lepowsky.Toward a theory of tensor products for representations of a vertex operator algebra. in: Proc. 20th International Conference on Differential Geometric Methods in Theoretical Physics, New York, 1991, ed. S. Catto and A. Rocha, World Scientific, Singapore, 1992, Vol. 1, 344–354.

    Google Scholar 

  25. Y.-Z. Huang and J. Lepowsky.Vertex operator algebras and operads. in: The Gelfand Mathematical Seminars, 1990–1992, ed. L. Corwin, I. Gelfand and J. Lepowsky, Birkhäuser, Boston, 1993, 145–161.

    Google Scholar 

  26. Y.-Z. Huang and J. Lepowsky.Operadic formulation of the notion of vertex operator algebra. in: Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups, Proc. Joint Summer Research Conference, Mount Holyoke, 1992, ed. P. Sally, M. Flato, J. Lepowsky, N. Reshetikhin and G. Zuckerman, Contemporary Math., Vol. 175, Amer. Math. Soc., Providence, 1994, 131–148.

    Google Scholar 

  27. Y.-Z. Huang and J. Lepowsky.A theory of tensor products for module categories for a vertex operator algebra, II. Selecta Mathematics, New Series,1 (1995), 757–786.

    Article  MATH  MathSciNet  Google Scholar 

  28. Y.-Z. Huang and J. Lepowsky.Tensor products of modules for a vertex operator algebra and vertex tensor categories. in: Lie Theory and Geometry, in Honor of Bertram Kostant, ed. J.-L. Brylinski, R. Brylinski, V. Guillemin and V. Kac, Progress in Math., Vol. 123, Birkhäuser, Boston, 1994, 349–383.

    Google Scholar 

  29. Y.-Z. Huang and J. Lepowsky.A theory of tensor products for module categories for a vertex operator algebra, III. J. Pure Appl. Alg.,100 (1995), 141–171.

    Article  MATH  MathSciNet  Google Scholar 

  30. V. F. R. Jones.Hecke algebra representations of braid groups and link polynomials. Ann. Math.,126 (1987), 335–388.

    Article  Google Scholar 

  31. F. A. Joyal and R. Street.Braided monoidal categories. Macquarie Mathematics Reports, Macquarie University, Australia, 1986.

    Google Scholar 

  32. D. Kazhdan and G. Lusztig.Affine Lie algebras and quantum groups. International Mathematics Research Notices (in Duke Math. J.)2 (1991), 21–29.

    Article  MathSciNet  Google Scholar 

  33. D. Kazhdan and G. Lusztig.Tensor structures arising from affine Lie algebras, I. J. Amer. Math. Soc.,6 (1993), 905–947.

    Article  MATH  MathSciNet  Google Scholar 

  34. D. Kazhdan and G. Lusztig.Tensor structures arising from affine Lie algebras, II. J. Amer. Math. Soc.,6 (1993), 949–1011.

    Article  MathSciNet  Google Scholar 

  35. D. Kazhdan and G. Lusztig.Tensor structures arising from affine Lie algebras, III. J. Amer. Math. Soc.,7 (1994), 335–381.

    Article  MATH  MathSciNet  Google Scholar 

  36. D. Kazhdan and G. Lusztig.Tensor structures arising from affine Lie algebras, IV. J. Amer. Math. Soc.,7 (1994), 383–453.

    Article  MATH  MathSciNet  Google Scholar 

  37. V. G. Knizhnik and A. B. Zamolodchikov.Current algebra and Wess-Zumino models in two dimensions. Nucl. Phys.,B247 (1984), 83–103.

    Article  MathSciNet  Google Scholar 

  38. T. Kohno.Linear representations of braid groups and classical Yang-Baxter equations. in: Braids, Santa Cruz, 1986, Contemporary Math.,78 (1988), 339–363.

    MathSciNet  Google Scholar 

  39. T. Kohno.Monodromy representations of braid groups and Yang-Baxter equations. Ann. Inst. Fourier37 (1987), 139–160.

    MATH  MathSciNet  Google Scholar 

  40. J. Lepowsky.Remarks on vertex operator algebras and moonshine. in: Proc. 20th International Conference on Differential Geometric Methods in Theoretical Physics, New York, 1991, ed. S. Catto and A. Rocha, World Scientific, Singapore, 1992, Vol. 1, 362–370.

    Google Scholar 

  41. H. Li.Representation theory and the tensor product theory for vertex operator algebras. Ph.D. Thesis, Rutgers University, 1994.

  42. J. P. May.The geometry of iterated loop spaces. Lecture Notes in Mathematics, No. 271, Springer-Verlag, 1972.

  43. G. Moore and N. Seiberg.Classical and quantum conformal field theory. Comm. Math. Phys.,123 (1989), 177–254.

    Article  MATH  MathSciNet  Google Scholar 

  44. N. Reshetikhin and V. G. Turaev.Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math.,103 (1991), 547–597.

    Article  MATH  MathSciNet  Google Scholar 

  45. V. V. Schechtman and A. N. Varchenko.Arrangements of hyperplanes and Lie algebra homology. Invent. Math.,106 (1991), 139–194.

    Article  MATH  MathSciNet  Google Scholar 

  46. G. Segal.The definition of conformal field theory. preprint, 1988.

  47. J.D. Stasheff.Homotopy associativity of H-spaces, I. Trans. Amer. Math. Soc.,108 (1963), 275–292.

    Article  MathSciNet  Google Scholar 

  48. J.D. Stasheff.Homotopy associativity of H-spaces, II. Trans. Amer. Math. Soc.108 (1963), 293–312.

    Article  MathSciNet  Google Scholar 

  49. A. Tsuchiya and Y. Kanie.Vertex operators in conformal field theory on1 and monodromy representations of braid group. in: Conformal Field Theory and Solvable Lattice Models, Advanced Studies in Pure Math., Vol. 16, Kinokuniya Company Ltd., Tokyo, 1988, 297–372.

    Google Scholar 

  50. A. Tsuchiya, K. Ueno and Y. Yamada.Conformal field theory on universal family of stable curves with gauge symmetries. in: Advanced Studies in Pure Math., Vol. 19, Kinokuniya Company Ltd., Tokyo, 1989, 459–565.

    Google Scholar 

  51. A. N. Varchenko.Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups. Advanced Series in Mathematical Physics, Vol. 21, World Scientific, Singapore, to appear.

  52. E. Verlinde.Fusion rules and modular transformations in 2D conformal field theory. Nucl. Phys.,B300 (1988), 360–376.

    Article  MathSciNet  Google Scholar 

  53. E. Witten.Non-abelian bosonization in two dimensions. Comm. Math. Phys.92 (1984), 455–472.

    Article  MATH  MathSciNet  Google Scholar 

  54. E. Witten.Quantum field theory and the Jones polynomial. Comm. Math. Phys.,121 (1989), 351–399.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y.Z., Lepowsky, J. A theory of tensor products for module categories for a vertex operator algebra, I. Selecta Mathematica, New Series 1, 699 (1995). https://doi.org/10.1007/BF01587908

Download citation

  • DOI: https://doi.org/10.1007/BF01587908

Keywords

Navigation