Skip to main content
Log in

Norm estimates in besov and Lizorkin-Triebel spaces for the solutions of second-order linear hyperbolic equations

  • Published:
Journal of Soviet Mathematics Aims and scope Submit manuscript

Abstract

In the paper one considers the nonhomogeneous hyperbolic equation

$$\partial _t^2 u + iB\left( t \right)\partial _t u + A\left( t \right)u = h$$

on\(\left[ {0, T} \right] \times \mathfrak{M}\), where\(\mathfrak{M}\)=R n or\(\mathfrak{M}\) is a smooth closed manifold, A(t) and B(t) are pseudodifferential operators on\(\mathfrak{M}\), depending on t ε [0, T], of orders 2 and 1, respectively. For the solutions of equation (1) for small t one establishes estimates of the form

With arbitrary r εR and integer ℓ≥0, where for G:,. and E:,. one can take the Besov space B:,.\(\left( \mathfrak{M} \right)\) or the Lizorkin-Triebet space F:,.\(\left( \mathfrak{M} \right)\), depending on the values n, v, p, q1 q2, and the “Brenner number” m, which are determined from the principal symbols of the operators A(0) and B(0); also the actual form of the scalar function σv,p, n (t) depends on n, v, p, q1 q2, and m: it may be power-like ∣t∣v−n+2n/p, or logarithmic ¦log¦t¦∥, or a constant. In addition, one obtains estimates of the form

characterizing the integrability properties over timespace and the smoothing (for t>0) of the solutions of equation (1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. W. A. Strauss, “On weak solutions of semilinear hyperbolic equations,” An. Acad. Brasil. Ciênc.,42, No. 4, 645–651 (1970).

    Google Scholar 

  2. J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaires, Dunod, Gauthier-Villars, Paris (1969).

    Google Scholar 

  3. O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Springer, New York (1985).

    Google Scholar 

  4. J. Ginibre and G. Velo, “The global Cauchy problem for the non linear Klein-Gordon equation,” Math. Z.,189, No. 4, 487–505 (1985).

    Google Scholar 

  5. J. Ginibre and G. Velo, “The global Cauchy problem for the non linear Klein-Gordon equation. II,” Ann. Inst. H. Poincaré Anal. Non Linéaire,6, No. 1, 15–35 (1989).

    Google Scholar 

  6. L. V. Kapitanskii, “The Cauchy problem for a semilinear equation. I,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst.,163, 76–104 (1987).

    Google Scholar 

  7. H. Pecher, “Lp-Abschätzungen und klassische Lösungen für nichtlineare Wellengleichungen. I,” Math. Z.,150, No. 2, 159–183 (1976).

    Google Scholar 

  8. Ph. Brenner and W. von Wahl, “Global classical solutions of nonlinear wave equations,” Math. Z.,176, No. 2, 87–121 (1981).

    Google Scholar 

  9. R. S. Strichartz, “Convolutions with kernels having singularities on a sphere,” Trans. Amer. Math. Soc.,148, No. 2, 461–471 (1970).

    Google Scholar 

  10. R. S. Strichartz, “A priori estimates for the wave equation and some applications,” J. Funct. Anal.,5, No. 2, 218–235 (1970).

    Google Scholar 

  11. Ph. Brenner, “On Lp-Lp′, estimates for the wave-equation,” Math. Z.,145, No. 3, 251–254 (1975).

    Google Scholar 

  12. Ph. Brenner, “Lp-Lp′-estimates for Fourier integral operators related to hyperbolic equations,” Math. Z.,152, 273–286 (1977).

    Google Scholar 

  13. Ph. Brenner, “On the existence of global smooth solutions of certain semilinear hyperbolic equations,” Math. Z.,167, 99–135 (1979).

    Google Scholar 

  14. L. V. Kapitanskii, “Some generalizations of the Strichartz-Brenner inequality,” Algebra Analiz,1, No. 3, 127–159(1989).

    Google Scholar 

  15. H. Triebel, Theory of Function Spaces, Birkhäuser, Basel (1983).

    Google Scholar 

  16. S. G. Krein and Yu. I. Petunin, “Scales of Banach spaces,” Usp. Mat. Nauk,21, No. 2, 89–168 (1966).

    Google Scholar 

  17. L. Hörmander, The Analysis of Linear Partial Differential Operators. III. Pseudo-Differential Operators, Springer, Berlin (1985).

    Google Scholar 

  18. O. A. Oleinik and E. V. Radkevich, Second Order Equations with nonnegative Characteristic Form, Am. Math. Soc., Providence (1973).

    Google Scholar 

  19. J. Marschall, “Some remarks on Triebel spaces,” Studia Math.,87, No. 1, 79–92 (1987).

    Google Scholar 

  20. J. Marschall, “Pseudodifferential operators with nonregular symbols of the classs mℓ, δ ,” Comm. Partial Differential Equations,12, No. 8, 921–965 (1987).

    Google Scholar 

  21. B. Marshall, W. Strauss, and S. Wainger, “ Lp−Lq -estimates for the Klein-Gordon equation,” J. Math. Pures Appl.,59, No. 4, 417–440 (1980).

    Google Scholar 

Download references

Authors

Additional information

Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova Akad. Nauk SSSR, Vol. 171, pp. 106–162, 1989.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapitanskii, L.V. Norm estimates in besov and Lizorkin-Triebel spaces for the solutions of second-order linear hyperbolic equations. J Math Sci 56, 2348–2389 (1991). https://doi.org/10.1007/BF01671936

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01671936

Keywords

Navigation