Skip to main content
Log in

Abstract

We introduce a new Markov point process that exhibits a range of clustered, random, and ordered patterns according to the value of a scalar parameter. In contrast to pairwise interaction processes, this model has interaction terms of all orders. The likelihood is closely related to the empty space functionF, paralleling the relation between the Strauss process and Ripley'sK-function. We show that, in complete analogy with pairwise interaction processes, the pseudolikelihood equations for this model are a special case of the Takacs-Fiksel method, and our model is the limit of a sequence of auto-logistic lattice processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baddeley, A. J. and Gill, R. D. (1992). Kaplan-Meier estimators for interpoint distance distributions of spatial point processes, Research Report, 718, Mathematical Institute, University of Utrecht. The Netherlands.

    Google Scholar 

  • Baddeley, A. J. and Møller, J. (1989). Nearest-neighbour Markov point processes and random sets,Internat. Statist. Rev.,57, 89–121.

    Google Scholar 

  • Baddeley, A. J. and Van Lieshout, M. N. M. (1991). Recognition of overlapping objects using Markov spatial models, Tech. Report, BS-R9109, CWI, Amsterdam.

    Google Scholar 

  • Baddeley, A. J. and Van Lieshout, M. N. M. (1992). ICM for object recognition,Computational Statistics (eds. Y. Dodge and J. Whittaker), Vol. 2, 271–286, Physica/Springer, Heidelberg.

    Google Scholar 

  • Baddeley, A. J. and Van Lieshout, M. N. M. (1993). Stochastic geometry models in high-level vision,Statistics and Images (eds. K. Mardia and G. K. Kanji), Vol. 1,Journal of Applied Statistics,20, 233–258, Carfax, Abingdon.

    Google Scholar 

  • Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems (with discussion).J. Roy. Statist. Soc. Ser. B,36, 192–236.

    Google Scholar 

  • Besag, J. (1977). Some methods of statistical analysis for spatial data,Bull. Internat. Statist. Inst.,47, 77–92.

    Google Scholar 

  • Besag, J., Milne, R. and Zachary, S. (1982). Point process limits of lattice processes,J. Appl. Probab.,19, 210–216.

    Google Scholar 

  • Cressie, N. A. C. (1991).Statistics for Spatial Data, Wiley, New York.

    Google Scholar 

  • Daley, D. J. and Vere-Jones, D. (1988).An Introduction to the Theory of Point Processes, Springer, New York.

    Google Scholar 

  • Diggle, P. J. (1983).Statistical Analysis of Spatial Point Patterns, Academic Press, London.

    Google Scholar 

  • Diggle, P. J. and Gratton, R. J. (1984). Monte Carlo methods of inference for implicit statistical models.J. Roy. Statist. Soc. Ser. B,46, 193–227.

    MathSciNet  Google Scholar 

  • Diggle, P. J., Gates, D. J. and Stibbard, A. (1987). A nonparametric estimator for pairwiseinteraction point processes,Biometrika,74, 763–770.

    Google Scholar 

  • Diggle, P. J., Fiksel, T., Grabarnik, P., Ogata, Y., Stoyan, D. and Tanemura, M. (1994). On parameter estimation for pairwise interaction processes,Internat. Statist. Rev.,62, 99–117.

    Google Scholar 

  • Fiksel, T. (1984). Estimation of parametrized pair potentials of marked and nonmarked Gibbsian point processes,Elektronische Informationsverarbeitung und Kybernetika,20, 270–278.

    Google Scholar 

  • Fiksel, T. (1988). Estimation of interaction potentials of Gibbsian point processes,Statistics,19, 77–86.

    Google Scholar 

  • Gates, D. J. and Westcott, M. (1986). Clustering estimates for spatial point distributions with unstable potentials,Ann. Inst. Statist. Math.,38, 123–135.

    Google Scholar 

  • Geyer, C. J. and Møller, J. (1993). Simulation procedures and likelihood inference for spatial point processes. Research Report, 260, Mathematical Institute, University of Aarhus, Denmark.

    Google Scholar 

  • Geyer, C. J. and Thompson, E. A. (1992). Constrained Monte Carlo maximum likelihood for dependent data (with discussion),J. Roy. Statist. Soc. Ser. B,54, 657–699.

    Google Scholar 

  • Glötzl, E. (1980a). Bemerkungen zu einer Arbeit von O. K. Kozlov,Math. Nachr.,94, 277–289.

    Google Scholar 

  • Glötzl, E. (1980b). Lokale Energien und Potentiale für Punktprozesse,Math. Nachr.,96, 195–206.

    Google Scholar 

  • Hall, P. (1988).An Introduction to the Theory of Coverage Processes, Wiley, New York.

    Google Scholar 

  • Hamilton, W. D. (1971). Geometry for the selfish herd,J. Theoret. Biol,31, 295–311.

    Google Scholar 

  • Hammersley, J. M., Lewis, J. W. E. and Rowlinson, J. S. (1975). Relationships between the multinomial and Poisson models of stochastic processes, and between the canonical and grand canonical ensembles in statistical mechanics, with illustrations and Monte Carlo methods for the penetrable sphere model of liquid-vapour equilibrium,Sankhyā Ser. A,37, 457–491.

    Google Scholar 

  • Illingworth, J. and Kittler, J. (1988). A survey of the Hough transform,Computer Vision, Graphics and Image Processing,44, 87–116.

    Google Scholar 

  • Jensen, J. L. (1993). Asymptotic normality of estimates in spatial point processes,Scand. J. Statist.,20, 97–109.

    Google Scholar 

  • Jensen, J. L. and Møller, J. (1991). Pseudolikelihood for exponential family models of spatial point processes,Annals of Applied Probability,1, 445–461.

    Google Scholar 

  • Kallenberg, O. (1984). An informal guide to the theory of conditioning in point processes,Internat. Statist. Rev.,52, 151–164.

    Google Scholar 

  • Kelly, F. P. and Ripley, B. D. (1976). On Strauss's model for clustering,Biometrika,63, 357–360.

    Google Scholar 

  • Kendall, W. S. (1990). A spatial Markov property for nearest-neighbour Markov point processes,J. Appl. Probab.,28, 767–778.

    Google Scholar 

  • Kozlov, O. K. (1976). Gibbsian description of point random fields,Theory Probab. Appl.,21, 339–355.

    Google Scholar 

  • Lawson, A. (1993). Gibbs sampling putative pollution sources, Tech. Report, Dundee Institute of Technology (in preparation).

  • Van Lieshout, M. N. M. and Baddeley, A. J. (1995). A nonparametric measure of spatial interaction in point patterns,Statist. Neerlandica (in press).

  • Mase, S. (1990). Mean characteristics of Gibbsian point processes,Ann. Inst. Statist. Math.,42, 203–220.

    Google Scholar 

  • Matheron, G. (1975).Random Sets and Integral Geometry, Wiley, New York.

    Google Scholar 

  • Matthes, K., Warmuth, J. and Mecke, J. (1979). Bemerkungen zu einer Arbeit von X. X. Nguyen und H. Zessin,Math. Nachr.,88, 117–127.

    Google Scholar 

  • Møller, J. (1989). On the rate of convergence of spatial birth-and-death processes,Ann. Inst. Statist. Math.,41, 565–581.

    Google Scholar 

  • Møller, J. (1992). Discussion contribution,J. Roy. Statist. Soc. Ser. B,54, 692–693.

    Google Scholar 

  • Møller, J. (1994). Markov chain Monte Carlo and spatial point processes, Research Report, 293, Mathematical Institute, University of Aarhus, Denmark.

    Google Scholar 

  • Moyeed, R. A. and Baddeley, A. J. (1991). Stochastic approximation for the MLE of a spatial point process,Scand. J. Statist.,18, 39–50.

    Google Scholar 

  • Nguyen, X. X. and Zessin, H. (1979). Integral and differential characterization of the Gibbs process,Math. Nachr.,88, 105–115.

    Google Scholar 

  • Ogata, Y. and Tanemura, M. (1981). Estimation for interaction potentials of spatial point patterns through the maximum likelihood procedure,Ann. Inst. Statist. Math.,33, 315–338.

    Google Scholar 

  • Ogata, Y. and Tanemura, M. (1984). Likelihood analysis of spatial point patterns,J. Roy. Statist. Soc. Ser. B,46, 496–518.

    Google Scholar 

  • Ogata, Y. and Tanemura, M. (1989). Likelihood estimation of soft-core interaction potentials for Gibbsian point patterns,Ann. Inst. Statist. Math.,41, 583–600.

    Google Scholar 

  • Penttinen, A. (1984).Modelling Interaction in Spatial Point Patterns: Parameter Estimation by the Maximum Likelihood Method, Number 7 in Jyväskylä Studies in Computer Science, Economics and Statistics, University of Jyvaskyla.

  • Preston, C. J. (1976).Random Fields, Springer, Berlin.

    Google Scholar 

  • Preston, C. J. (1977). Spatial birth-and-death processes,Bull. Internat. Statist. Inst.,46, 371–391.

    Google Scholar 

  • Ripley, B. D. (1977). Modelling spatial patterns (with discussion),J. Roy. Statist. Soc. Ser. B,39, 172–212.

    Google Scholar 

  • Ripley, B. D. (1981).Spatial Statistics, Wiley, New York.

    Google Scholar 

  • Ripley, B. D. (1988).Statistical Inference for Spatial Processes, Cambridge University Press, U.K.

    Google Scholar 

  • Ripley, B. D. (1989). Gibbsian interaction models,Spatial Statistics: Past, Present and Future (ed. D. A. Griffiths), 1–19, Image, New York.

    Google Scholar 

  • Ripley, B. D. and Kelly, F. P. (1977). Markov point processes,J. London Math. Soc.,15, 188–192.

    Google Scholar 

  • Rosenfeld, A. and Pfalz, J. L. (1968). Distance functions on digital pictures, Pattern Recognition,1, 33–61.

    Google Scholar 

  • Rowlinson, J. S. (1980). Penetrable sphere models of liquid-vapor equilibrium,Adv. Chem. Phys.,41, 1–57.

    Google Scholar 

  • Rowlinson, J. S. (1990). Probability densities for some one-dimensional problems in statistical mechanics,Disorder in Physical Systems (eds. G. R. Grimmett and D. J. A. Welsh), 261–276, Clarendon Press, Oxford.

    Google Scholar 

  • Ruelle, D. (1969).Statistical Mechanics, Wiley, New York.

    Google Scholar 

  • Särkkä, A. (1989). On parameter estimation of Gibbs point processes through the pseudolikelihood estimation method, Research Report, 4, Department of Statistics, University of Jyväskylä, Finland.

    Google Scholar 

  • Särkkä, A. (1990). Applications of Gibbs point processes: pseudo-likelihood method with comparisons, Research Report, 10, Department of Statistics, University of Jyväskylä, Finland.

    Google Scholar 

  • Stoyan, D. and Stoyan, H. (1992).Fraktale—Formen—Punktfelder, Akademie Verlag, Berlin.

    Google Scholar 

  • Stoyan, D., Kendall, W. S. and Mecke, J. (1987).Stochastic Geometry and Its Applications, Wiley, Chichester.

    Google Scholar 

  • Strauss, D. J. (1975). A model for clustering,Biometrika,63, 467–475.

    Google Scholar 

  • Takacs, R. (1983). Estimator for the pair-potential of a Gibbsian point process, Institutsbericht, 238, Institut für Mathematik, Johannes Kepler Universität Linz, Austria.

    Google Scholar 

  • Takacs, R. (1986). Estimator for the pair potential of a Gibbsian point process,Statistics,17, 429–433.

    Google Scholar 

  • Widom, B. and Rowlinson, J. S. (1970). New model for the study of liquid-vapor phase transitions,J. Chem. Phys.,52, 1670–1684.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Baddeley, A.J., van Lieshout, M.N.M. Area-interaction point processes. Ann Inst Stat Math 47, 601–619 (1995). https://doi.org/10.1007/BF01856536

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01856536

Key words and phrases

Navigation