Skip to main content
Log in

Symmetric recursive algorithms for surfaces: B-patches and the de boor algorithm for polynomials over triangles

  • Published:
Constructive Approximation Aims and scope

Abstract

Using the concept of a symmetric recursive algorithm, we construct a new patch representation for bivariate polynomials: the B-patch. B-patches share many properties with B-spline segments: they are characterized by their control points and by a three-parameter family of knots. If the knots in each family coincide, we obtain the Bézier representation of a bivariate polynomial over a triangle. Therefore B-patches are a generalization of Bézier patches. B-patches have a de Boor-like evaluation algorithm, and, as in the case of B-spline curves, the control points of a B-patch can be expressed by simply inserting a sequence of knots into the corresponding polar form. In particular, this implies linear independence of the blending functions. B-patches can be joined smoothly and they have an algorithm for knot insertion that is completely similar to Boehm's algorithm for curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Barry (1987): Urn Models, Recursive Curve Schemes, and Computer Aided Geometric Design, Ph.D. Dissertation, University of Utah, Salt Lake City.

    Google Scholar 

  2. R. H. Bartels, J. C. Beatty, B. A. Barsky (1987): An Introduction to Splines for Use in Computer Graphics and Geometric Modelling. San Mateo, CA: Kaufmann.

    Google Scholar 

  3. W. Boehm (1980):Inserting new knots into a B-spline. Comput. Aided Design,12:50–62.

    Google Scholar 

  4. W. Boehm (1983):The de Boor algorithm for triangular splines. In: Surfaces in CAGD (R. E. Barnhill, W. Boehm eds.). Amsterdam: North-Holland, pp. 109–120.

    Google Scholar 

  5. W. Bohem, G. Farin, J. Kahmann (1984):A survey of curve and surface methods in CAGD. Comput. Aided Geom. Design,1:1–60.

    Google Scholar 

  6. W. Boehm (1988):On de Boor-like algorithms and blossoming. Comput. Aided Geom. Design,5: 71–79.

    Google Scholar 

  7. C. de Boor (1972):On calculating with B-splines. J. Approx. Theory,6:50–62.

    Google Scholar 

  8. C. de Boor (1978): A Practical Guide to Splines. New York: Springer-Verlag.

    Google Scholar 

  9. P. de Casteljau (1985): Formes à pôles. Paris: Hermes.

    Google Scholar 

  10. P. de Casteljau (1986): Shape Mathematics and CAD. London: Kogan Page.

    Google Scholar 

  11. T. de Rose, T. Hollman (1987): The Triangle: A Multiprocessor Architecture for Fast Curve and Surface Generation. Technical Report 87-08-07, Computer Science Department, University of Washington, Seattle.

    Google Scholar 

  12. G. E. Farin (1979): Subsplines über Dreicken. Dissertation, TU, Braunschweig.

    Google Scholar 

  13. G. E. Farin (1980): Bézier Polynomials over Triangles and the Construction of Piecewise C-Polynomials. TR/91, Department Mathematics, Brunel University, Uxbridge, Middlesex.

    Google Scholar 

  14. G. E. Farin (1986):Triangular Bernstein-Bézier patches. Comput. Aided Geom. Design,3:83–127.

    Google Scholar 

  15. G. E. Farin (1988): Curves and Surfaces for Computer Aided Geometric Design. New York: Academic Press.

    Google Scholar 

  16. R. N. Goldman (1985):Pólya's urn model and computer aided geometric design. SIAM J. Algebraic Discrete Methods,6:1–28.

    Google Scholar 

  17. W. J. Gordon, R. F. Riesenfeld (1974):B-spline curves and surfaces, in: (R. E. Barnhill, R. F. Riesenfeld eds.) Computer Aided Geometric Design, New York: Academic Press.

    Google Scholar 

  18. J.Hoschek (1987): Grundlagen der geometrischen Datenverarbeitung. Fernuniversität Hagen.

  19. H. Prautzsch (1984): Unterteilungsalgorithmen für multivariate Splines. Dissertation, TU, Braunschweig.

    Google Scholar 

  20. L. Ramshaw (1987): Blossoming: A Connect-the-Dots Approach to Splines. Digital Systems Research Center, Palo Alto.

    Google Scholar 

  21. L. Ramshaw (1988):Béziers and B-splines as multiaffine maps. In: Theoretical Foundation of Computer Graphics and CAD, New York: Springer-Verlag, pp. 757–776.

    Google Scholar 

  22. L. Ramshaw (1989):Blossoms are polar forms. Comput. Aided Geora. Design,6:323–358.

    Google Scholar 

  23. M. A. Sabin (1976): The Use of Piecewise Forms for the Numerical Representation of Shape. Ph.D. Dissertation, Hungarian Academy of Sciences, Budapest.

    Google Scholar 

  24. L. L. Schumaker (1981): Spline Functions: Basic Theory. New York: Wiley.

    Google Scholar 

  25. H.-P. Seidel (1988):Knot insertion from a blossoming point of view. Comput. Aided Geom. Design,5:81–86.

    Google Scholar 

  26. H.-P. Seidel (1989):A new multiaffine approach to B-splines. Comput. Aided Geom. Design,6:23–32.

    Google Scholar 

  27. H.-P.Seidel (1989): Polynome, Splines und symmetrische rekursive Algorithmen im Computer Aided Geometric Design. Habilitationsschrift, Tübingen.

  28. H.-P. Seidel (1990):Symmetric recursive algorithms for curves. Comput. Aided Geom. Design,7:57–67.

    Google Scholar 

  29. E. Stark (1976): Mehrfach differenzierbare Bézier-Kurven und Bézier-Flachen, Dissertation, TU, Braunschweig.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Carl de Boor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seidel, HP. Symmetric recursive algorithms for surfaces: B-patches and the de boor algorithm for polynomials over triangles. Constr. Approx 7, 257–279 (1991). https://doi.org/10.1007/BF01888157

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01888157

AMS classification

Key words and phrases

Navigation