Skip to main content
Log in

Multivariate cardinal interpolation with radial-basis functions

  • Published:
Constructive Approximation Aims and scope

Abstract

For a radial-basis functionϕ∶ℛ→ℛ we consider interpolation on an infinite regular lattice

, tof∶ℛ n→ℛ, whereh is the spacing between lattice points and the cardinal function

, satisfiesX(j)=δ oj for allj∈ℒ n. We prove existence and uniqueness of such cardinal functionsX, and we establish polynomial precision properties ofI h for a class of radial-basis functions which includes\(\varphi (r) = r^{2q + 1} \),\(\varphi (r) = r^{2q} \log r,\varphi (r) = \sqrt {r^2 + c^2 } \), and\(\varphi (r) = 1/\sqrt {r^2 + c^2 } \) whereq∈ℒ +. We also deduce convergence orders ofI hf to sufficiently differentiable functionsf whenh0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz, I. A. Stegun (1970): Handbook of Mathematical Functions. New York: Dover.

    Google Scholar 

  2. M. D. Buhmann (1988):Convergence of univariate quasi-interpolation using multiquadrics. IMA J. Numer. Anal.,8:365–383.

    Google Scholar 

  3. M. D.Buhmann (1988): Multivariate Interpolation in Odd-Dimensional Euclidean Spaces Using Multiquadrics. DAMTP NA/6, University of Cambridge.

  4. J. Duchon (1977):Splines minimizing rotation-invariant seminorms in Sobolev spaces. In: Constructive Theory of Functions of Several Variables (W. Schempp, K. Zeller, eds.). Berlin: Springer-Verlag, pp. 85–100.

    Google Scholar 

  5. R. Franke (1982):Scattered data interpolation: tests of some methods. Math. Comp.,38:181–200.

    Google Scholar 

  6. H. Grauert, K. Fritzsche (1974): Einführung in die Funktionentheorie mehrerer Veränderlicher. Heidelberg: Springer-Verlag.

    Google Scholar 

  7. I. R. H.Jackson (1987): An order of convergence for some radial basis functions. DAMTP NA/11, University of Cambridge.

  8. I. R. H. Jackson (1988):Convergence properties of radial basis functions. Constr. Approx.,4:243–264.

    Google Scholar 

  9. I. R. H.Jackson (1988): Radial Basis Function Methods for Multivariable Approximation. Ph.D. Dissertation, University of Cambridge.

  10. D. S. Jones (1982): The Theory of Generalised Functions, 2nd edn. Cambridge: Cambridge University Press.

    Google Scholar 

  11. W. R.Madych, S. A.Nelson (preprint):Polyharmonic cardinal splines.

  12. M. J. D. Powell (1988):Radial basis function approximations to polynomials. In: Numerical Analysis 1987 (D. F. Griffiths, G. A. Watson, eds.). London: Longman, pp. 223–241.

    Google Scholar 

  13. W. Rudin (1973): Functional Analysis. London: McGraw-Hill.

    Google Scholar 

  14. I. J. Schoenberg (1946):Contributions to the problem of approximation of equidistant data by analytic functions. Quart. Appl. Math.,4:45–99.

    Google Scholar 

  15. L. Schwartz (1966): Théorie des Distributions. Paris: Hermann.

    Google Scholar 

  16. E. M. Stein, G. Weiss (1971): Introduction to Fourier Analysis on Euclidean Spaces. Princeton: Princeton University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Ronald A. DeVore.AMS classification: Primary 41A05, 41A63, 41A25; Secondary 41A30.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buhmann, M.D. Multivariate cardinal interpolation with radial-basis functions. Constr. Approx 6, 225–255 (1990). https://doi.org/10.1007/BF01890410

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01890410

Key words and phrases

Navigation