Skip to main content
Log in

Moderate growth and random walk on finite groups

  • Published:
Geometric & Functional Analysis GAFA Aims and scope Submit manuscript

Abstract

We study the rate of convergence of symmetric random walks on finite groups to the uniform distribution. A notion of moderate growth is introduced that combines with eigenvalue techniques to give sharp results. Roughly, for finite groups of moderate growth, a random walk supported on a set of generators such that the diameter of the group is γ requires order γ2 steps to get close to the uniform distribution. This result holds for nilpotent groups with constants depending only on the number of generators and the class. Using Gromov's theorem we show that groups with polynomial growth have moderate growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • [AD]D. Aldous, P. Diaconis, Shuffling cards and stopping times, Amer. Math. Monthly 93 (1986), 333–348.

    Google Scholar 

  • [B]H. Bass, The degree of polynomial growth of finitely generated nilpotent groups, Proc. London Math Soc. 25 (1982), 603–614.

    Google Scholar 

  • [C]T. Carne, A transmutation formula for Markov chains, Bull. Sc. Math. 2nd série 109 (1985), 399–405.

    Google Scholar 

  • [ChDG]F. Chung, P. Diaconis, R. L. Graham, A random walk problem arising in random number generation, Ann. Prob. 15 (1987), 1148–1165.

    Google Scholar 

  • [CoS-C]T. Coulhon, L. Saloff-Coste, Puissance d'un operateur regularisant, Ann. Inst. H. Poincare Proba. Stat. 26 (1990), 419–436.

    Google Scholar 

  • [D]P. Diaconis, Group Representations in Probability and Statistics, Institute of Mathematical Statistics, Hayward, CA (1988).

    Google Scholar 

  • [DG]P. Diaconis, R. L. Graham, An affine walk on the hypercube, Jour. Comp. Appl. Math 41 (1992), 215–235.

    Google Scholar 

  • [DS-C1]P. Diaconis, L. Saloff-Coste, Nash's inequality and convergence of finite Markov chains to equilibrium, Technical report (1992).

  • [DS-C2]P. Diaconis, L. Saloff-Coste, Comparison theorems for random walk on groups, To appear in Ann. Prob. 21 (1993).

  • [DS-C3]P. Diaconis, L. Saloff-Coste, An application of Harnack inequalities to random walk on nilpotent quotients, Technical report, Dept. of Mathematics, Harvard University (1993).

  • [DStr]P. Diaconis, D. Stroock, Geometric bounds for reversible Markov chains, Ann. Appl. Prob. 1 (1991), 36–61.

    Google Scholar 

  • [E]J. Ellenberg, A sharp diameter bound for upper triangular matrices, Senior honors thesis, Dept. Math., Harvard University (1993).

  • [Gr]M. Gromov, Groups of polynomial growth and expanding maps, Publ. Math. I.H.E.S. 53 (1981), 53–73.

    Google Scholar 

  • [Gu]Y. Guivarc'h, Croissance polynomiale et periodes des fonctions harmoniques, Bull. Soc. Math. France, 101 (1973), 333–379.

    Google Scholar 

  • [H]M. Hall, The Theory of Groups, 2nd ed, Chelsea, New York (1976).

    Google Scholar 

  • [Ha]P. Hall, Nilpotent Groups. In Collected Works of Philip Hall, Oxford University Press, Oxford (1957), 417–462.

    Google Scholar 

  • [He]W. Hebisch, On heat kernels on Lie groups.Math Zeit. 210 (1992), 593–605.

    Google Scholar 

  • [HeS-C]W. Hebisch, L. Saloff-Coste, Gaussian estimates for Markov chains, Ann. Proba. 21 (1993), 673–709.

    Google Scholar 

  • [Hi]M. Hildebrand, Random processes of the formX n+1=a n X n+b n (modp), Ann. Proba. 21 (1993), 710–720.

    Google Scholar 

  • [IR]K. Ireland, M. Rosen, Elements of Number Theory, Bogdon and Quigley, Tarrytown, New York (1972).

  • [J]D.L. Johnson, The groups of formal power series under substitutions, Jour. Austral. Math Soc. (A) 45 (1988), 296–302.

    Google Scholar 

  • [MKSo]W. Magnus, A. Karrass, D. Solitar, Combinatorial Group Theory, 2nd ed., Dover, New York (1972).

    Google Scholar 

  • [Ro]J. Rotman, The Theory of Groups: An Introduction, 3rd ed., Allyn and Bacon, Boston (1984).

    Google Scholar 

  • [St]R. Stong, A random walk on the Heisenberg group, Technical report, Department of Mathematics, U.C.L.A. (1992).

  • [Su1]M. Suzuki, Group Theory I, Springer Verlag, New York (1982).

    Google Scholar 

  • [Su2]M. Suzuki, Group Theory II, Springer Verlag, New York (1986).

    Google Scholar 

  • [T]J. Tits, Appendix to Gromov's paper, Publ. Math. I.H.E.S. 58 (1981), 74–78.

    Google Scholar 

  • [V]N. Varopoulos, Long range estimates for Markov chains, Bull. Sc. Math. 109 (1985), 225–252.

    Google Scholar 

  • [VS-CCo]N. Varopoulos, L. Saloff-Coste, Th. Coulhon, Analysis and geometry on groups, Cambridge University Press, Cambridge (1993).

    Google Scholar 

  • [Z]M. Zack, A random walk on the Heisenberg group. Ph.D Thesis, Dept. Math., University of California, La Jolla (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diaconis, P., Saloff-Coste, L. Moderate growth and random walk on finite groups. Geometric and Functional Analysis 4, 1–36 (1994). https://doi.org/10.1007/BF01898359

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01898359

Keywords

Navigation