Skip to main content
Log in

The symmetric procrustes problem

  • Part II Numerical Mathematics
  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The following “symmetric Procrustes” problem arises in the determination of the strain matrix of an elastic structure: find the symmetric matrixX which minimises the Frobenius (or Euclidean) norm ofAX — B, whereA andB are given rectangular matrices. We use the singular value decomposition to analyse the problem and to derive a stable method for its solution. A perturbation result is derived and used to assess the stability of methods based on solving normal equations. Some comparisons with the standard, unconstrained least squares problem are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. Bartels and G. W. Stewart,Solution of the matrix equation AX+XB=C, Comm. ACM, 15 (1972), pp. 820–826.

    Google Scholar 

  2. J. E. Brock,Optimal matrices describing linear systems, AIAA Journal, 6 (1968), pp. 1292–1296.

    Google Scholar 

  3. K. Fan and A. J. Hoffman,Some metric inequalities in the space of matrices, Proc. Amer. Math. Soc., 6 (1965), pp. 111–116.

    Google Scholar 

  4. G. H. Golub and C. F. Van Loan,Matrix Computations, Johns Hopkins University Press, Baltimore, Maryland, 1983.

    Google Scholar 

  5. B. F. Green,The orthogonal approximation of an oblique structure in factor analysis, Psychometrika, 17 (1952), pp. 429–440.

    Google Scholar 

  6. P. R. Halmos,Positive approximants of operators, Indiana Univ. Math. J., 21 (1972), pp. 951–960.

    Google Scholar 

  7. N. J. Higham,Computing a nearest symmetric positive semi-definite matrix, to appear in Linear Algebra and Appl.

  8. N. J. Higham,Computing the polar decomposition — with applications, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 1160–1174.

    Google Scholar 

  9. W. D. Hoskins, D. S. Meek and D. J. Walton,The numerical solution of the matrix equation XA+AY=F, BIT, 17 (1977), pp. 184–190.

    Google Scholar 

  10. P. Lancaster and M. Tismenetsky,The Theory of Matrices, Second Edition, Academic Press, New York, 1985.

    Google Scholar 

  11. H. J. Larson,Least squares estimation of the components of a symmetric matrix, Technometrics, 8 (1966), pp. 360–362.

    Google Scholar 

  12. C. B. Moler,MATLAB users' guide, Technical Report CS81-1 (revised), Department of Computer Science, University of New Mexico, Albuquerque, 1982.

    Google Scholar 

  13. A. Ruhe,Closest normal matrix finally found!, BIT 27, (1987), 585–598.

    Google Scholar 

  14. P. H. Schonemann,A generalized solution of the orthogonal Procrustes problem, Psychometrika, 31 (1966), pp. 1–10.

    Google Scholar 

  15. G. Strang,Introduction to Applied Mathematics, Wellesley-Cambridge Press, Wellesley, Massachusetts, 1986.

    Google Scholar 

  16. P.-Å. Wedin,Perturbation theory for pseudo-inverses, BIT, 13 (1973), pp. 217–232.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higham, N.J. The symmetric procrustes problem. BIT 28, 133–143 (1988). https://doi.org/10.1007/BF01934701

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01934701

1980 Mathematics Subject Classification

Keywords

Navigation