Skip to main content
Log in

A sharp form of Nevanlinna's second fundamental theorem

  • Published:
Inventiones mathematicae Aims and scope

Summary

Letf be meromorphic in the plane. We find a sharp upper bound for the error term

$$S(r,f) = m(r,f) + \sum\limits_{i = 1}^q {m(r,a_i ,f)} + N_1 (r,f) - 2T(r,f)$$

in Nevanlinna's second fundamental theorem. For any positive increasing functions ϕ(t)/t andp(t) with\(\int\limits_1^\infty {dt/\varphi (t)}< \infty \) and\(\int\limits_1^\infty {dt/p(t)} = \infty \) we have

$$S\left( {r,f} \right) \leqq \log ^ + \left\{ {\frac{{\varphi \left( {T\left( {r,f} \right)} \right)}}{{p\left( r \right)}}} \right\} + O\left( 1 \right)$$

asr→∞ outside a setE with\(\int\limits_E {dr/p(r)}< \infty \). Further if ψ(t)/t is positive and increasing and\(\int\limits_1^\infty {dt/} \psi (t) = \infty \) then there is an entiref such thatS(r, f)≧logψ(T(r, f)) outside a set of finite linear measure. We also prove analogous results for functions meromorphic in a disk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borel, E.: Sur les zéros des fonctions entières. Acta Math.20, 357–396 (1896–1897)

    Google Scholar 

  2. Gol'dberg, A.A., Grinshtein, V.A.: The logarithmic derivative of a meromorphic function (Russian): Mat. Zametki19, 525–530 (1976); English transl. in Math. Notes19, 320–323 (1976)

    Google Scholar 

  3. Hayman, W.K.: Meromorphic functions. Oxford: Clarendon Press 1964

    Google Scholar 

  4. Lang, S.: Transcendental numbers and diophantine approximations. Bull. Am. Math. Soc.77, 635–677 (1971)

    Google Scholar 

  5. Lang, S.: The error term in Nevanlinna theory, Duke Math. J.56, 193–218 (1988).

    Google Scholar 

  6. Lang, S., Cherry, W.: Topics in Nevanlinna theory III, Lect. Notes Math. vol. 1433. New York: Springer, 1990

    Google Scholar 

  7. Miles, J.: A sharp form of the lemma on the logarithmic derivative, to appear in J. London Math. Soc.

  8. Nevanlinna, R.: Le théorème de Picard-Borel et la théorie des fonctions méromorphes. Paris, 1929. Reprinted by Chelsea, New York, 1974

  9. Nevanlinna, R.: Remarques sur les fonctions monotones, Bull. Sci. Math.55, 140–144 (1931)

    Google Scholar 

  10. Osgood, C.F.: Sometimes effective Thue-Siegel-Roth-Schmidt-Nevanlinna bounds, or better, J. Number Theory21, 347–389 (1985)

    Google Scholar 

  11. Roth, K.F.: Rational approximations to algebraic numbers, Mathematika2, 1–20 (1955)

    Google Scholar 

  12. Vojta, P.: Diophantine approximations and value distribution theory, Lect. Notes Math. vol. 1239. New York: Springer, 1987

    Google Scholar 

  13. Wong, P.: On the second main theorem in Nevanlinna theory, Amer. J. Math.111, 549–583 (1989)

    Google Scholar 

  14. Ye, Z.: On Nevanlinna's error terms, Duke Math. J.64, 243–260 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Oblatum 18-III-1991 & 27-V-1991

Research partially supported by the U.S. National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinkkanen, A. A sharp form of Nevanlinna's second fundamental theorem. Invent Math 108, 549–574 (1992). https://doi.org/10.1007/BF02100617

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02100617

AMS (1991) Classification

Navigation