Skip to main content
Log in

Ergodicity of quantum cellular automata

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We define a class of dynamical maps on the quasi-local algebra of a quantum spin system, which are quantum analoges of probabilistic cellular automata. We develop criteria for such a system to be ergodic, i.e., to posses a unique invariant state. Intuitively, ergodicity obtains if the local transition operators exhibit sufficiently large disorder. The ergodicity criteria also imply bounds for the exponential decay of correlations in the unique invariant state. The main technical tool is a quantum version of oscillation norms, defined in the classical case as the sum over all sites of the variations of an observable with respect to local spin flips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Maes and S. B. Shlosman, Ergodicity of probabilistic cellular automata: A constructive criterion,Commun. Math. Phys. 135:233–251 (1991).

    Google Scholar 

  2. J. L. Lebowitz, C. Maes, and E. R. Speer, Statistical mechanics of probabilistic cellular automata,J. Stat. Phys. 59:117–170 (1990).

    Google Scholar 

  3. A. Georges and P. Le Doussal, From equilibrium spin models to probabilistic cellular automatata,J. Stat. Phys. 54:1011–1064 (1989).

    Google Scholar 

  4. T. M. Liggett,Interacting Particle Systems (Springer-Verlag, New York, 1985).

    Google Scholar 

  5. M. Fannes, B. Nachtergaele, and R. F. Werner, Finitely correlated states of quantum spin chains,Commun. Math. Phys. 144:443–490.

  6. M. Fannes, B. Nachtergaele, and R. F. Werner, Finitely correlated pure states,J. Funct. Anal. 120:511–534 (1994).

    Google Scholar 

  7. S. Richter, Construction of states on two-dimensional lattices and quantum cellular automata, Ph.D. Thesis, Osnabrück (1994).

  8. G. Grössing and A. Zeilinger, Quantum cellular automata,Complex Syst. 2:197–208, and 611–623 (1988).

    Google Scholar 

  9. S. Fussy, G. Grössing, H. Schwabl, and A. Scrinzi, Nonlinear computation in quantum cellular automata,Phys. Rev. A 48:3470–3477 (1993).

    Google Scholar 

  10. C. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein, Quantum cellular automata,Nanotechnology 4:49–57 (1993).

    Google Scholar 

  11. R. Mainieri, Design constraints for nanometer scale quantum computers, Preprint Los Alamos LAUR93-4333 [cond-mat/9410109].

  12. M. Biafore, Cellular automata for nanometer-scale computation,Physica D 70:415–433 (1994).

    Google Scholar 

  13. D. P. DiVincenzo, Two-bit gates are universal for quantum computation,Phys. Rev. A 51:1015–1022 (1995).

    Google Scholar 

  14. C. Maes and S. B. Shlosman, When is an interacting particle system ergodic?Commun. Math. Phys. 151:447–466 (1993).

    Google Scholar 

  15. T. Matsui, On Markov semigroups of UHF algebras,Rev. Math. Phys. 5:587–600 (1993).

    Google Scholar 

  16. T. Matsui, Purification and uniqueness of quantum Gibbs states,Commun. Math. Phys. 162:321–332 (1994).

    Google Scholar 

  17. T. Matsui, Interacting particle systems on non-commutative spaces, inOn Three Levels; Micro-, Mesons and Macro-Approaches in Physics M. Fannes, C. Maes, and A. Verbeure, eds., (Plenum Press New York, 1994).

    Google Scholar 

  18. T. Matsui, Quantum statistical mechanics and Feller semigroup, Preprint, Tokyo Metropolitan University (1995).

  19. A. W. Majewski and B. Zegarlinski, Quantum stochastic dynamics I: Spin systems on a lattice, Preprint, Imperial College London (March 1995).

  20. M. Takesaki,Theory of Operator Algebras I (Springer-Verlag, Berlin, 1979).

    Google Scholar 

  21. O. Bratteli and D. W. Robinson,Operator Algebras and Quantum Statistical Mechanics, 2 vols. (Springer-Verlag, Berlin, 1979, 1981).

    Google Scholar 

  22. N. Dunford and J. T. Schwartz,Linear operators, I (Wiley, New York, 1957).

    Google Scholar 

  23. C. Maes, Coupling interacting particle systems,Rev. Math. Phys. 5:457–475 (1993).

    Google Scholar 

  24. A. K. Ekert, B. Huttner, G. M. Palma, and A. Peres, Eavesdropping on quantum-cryptographical systems,Phys. Rev. A 50:1047–1056 (1994).

    Google Scholar 

  25. V. I. Paulsen,Completely Bounded Maps and Dilations (Longmans, London, 1986).

    Google Scholar 

  26. R. R. Smith, Completely bounded maps betweenC *-algebras,J. Lond. Math. Soc. 27:157–166.

  27. W. F. Stinespring, Positive functions onC *-algebras,Proc. Am. Math. Soc. 6:211–216 1955.

    Google Scholar 

  28. G. Wittstock, Ein operatorwertiger Hahn-Banach Satz,J. Funct. Anal. 40:127–150 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, S., Werner, R.F. Ergodicity of quantum cellular automata. J Stat Phys 82, 963–998 (1996). https://doi.org/10.1007/BF02179798

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179798

Key Words

Navigation