Skip to main content
Log in

The equivalence of ensembles for classical systems of particles

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

For systems of particles in classical phase space with standard Hamiltonian, we consider (spatially averaged) microcanonical Gibbs distributions in finite boxes. We show that infinite-volume limits along suitable subsequences exist and are grand canonical Gibbs measures. On the way, we establish a variational formula for the thermodynamic entropy density, as well as a variational characterization of grand canonical Gibbs measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. O. Georgii and H. Zessin, Large deviations and the maximum entropy principle for marked point random fields,Prob. Theory Related Fields 96:177–204 (1993).

    Google Scholar 

  2. H. O. Georgii, Large deviations and the equivalence of ensembles for Gibbsian particle systems with superstable interaction,Prob. Theory Related Fields 99:171–195 (1994).

    Google Scholar 

  3. D. Ruelle,Statistical Mechanics. Rigorous Results (Benjamin, New York, 1969).

    Google Scholar 

  4. O. E. Lanford, Entropy and equilibrium states in classical statistical mechanics, inStatistical Mechanics and Mathematical Problems, A. Lenard, ed. (Springer, Berlin, 1973).

    Google Scholar 

  5. A. Martin-Löf,Statistical Mechanics and the Foundations of Thermodynamics (Springer, Berlin, 1979).

    Google Scholar 

  6. A. E. Khinchin,Mathematical Foundations of Statistical Mechanics (Dover, New York, 1949).

    Google Scholar 

  7. A. M. Halfina, The limiting equivalence of the canonical and grand canonical ensembles (low density case).Math. USSR Sbornik 9:1–52 (1969).

    Google Scholar 

  8. R. A. Minlos and A. Haitov, Limiting equivalence of thermodynamic ensembles in case of one-dimensional systems,Trans. Moscow Math. Soc. 32:143–180 (1975).

    Google Scholar 

  9. R. L. Dobrushin and B. Tirozzi, The central limit theorem and the problem of equivalence of ensembles,Commun. Math. Phys. 54:173–192 (1977).

    Google Scholar 

  10. M. Campanino, G. Del Grosso, and B. Tirozzi, Local limit theorem for Gibbs random fields of particles and unbounded spins.J. Math. Phys. 20:1752–1758 (1979).

    Google Scholar 

  11. A. Martin-Löf, The equivalence of ensembles and the Gibbs phase rule for classical lattice systems,J. Stat. Phys. 20:557–569 (1979).

    Google Scholar 

  12. R. L. Thompson, Equilibrium states on thin energy shells,Mem. Am. Math. Soc. 1974:150 (1974).

    Google Scholar 

  13. H. O. Georgii,Canonical Gibbs Measures (Springer, Berlin, 1979).

    Google Scholar 

  14. M. Aizenman, S. Goldstein, and J. L. Lebowitz, Conditional equilibrium and the equivalence of microcanonical and and grandcanonical ensembles in the thermodynamic limit,Common. Math. Phys. 62:279–302 (1978).

    Google Scholar 

  15. C. Preston, Canonical and microcanonical Gibbs states,Z. Wahrsch. Verw. Gebiete 40:125–158 (1979).

    Google Scholar 

  16. M. Pirlot, Generalized canonical states,Ann.Sci. Univ. Clermont-Ferrand II. Prob. Appl. 4:69–91 (1985).

    Google Scholar 

  17. P. Vanheuverzwijn, Discrete lattice systems and the equivalence of microcanonical, canonical and grand canonical Gibbs states,Commun. Math. Phys. 101:153–172 (1985).

    Google Scholar 

  18. K. Matthes, J. Kerstan, and J. Mecke,Infinitely Divisible Point Processes (Wiley, Chichester, 1978).

    Google Scholar 

  19. T. Tjur,Probability Based on Radon Measures (Wiley, Chichester, 1980).

    Google Scholar 

  20. D. Ruelle, Superstable interactions in classical statistical mechanics,Commun. Math. Phys. 18:127–159 (1970).

    Google Scholar 

  21. R. Rechtmann and O. Penrose, Continuity of the temperature and derivation of the Gibbs canonical distribution in classical statistical mechanics,J. Stat. Phys. 19:359–366 (1978).

    Google Scholar 

  22. O. E. Lanford and D. Ruelle, Observables at infinity and states with short range correlations in statistical mechanics,Commun. Math. Phys. 9:327–338 (1968).

    Google Scholar 

  23. C. Preston,Random Fields (Springer, Berlin, 1976).

    Google Scholar 

  24. H. O. Georgii,Gibbs Measures and Phase Transitions, (de Gruyter, Berlin, 1988).

    Google Scholar 

  25. R. L. Dobrushin, Gibbsian random fields for particles without hard core,Theor. Math. Phys. 4:705–719 (1970).

    Google Scholar 

  26. H. O. Georgii, Large deviations and maximum entropy principle for interacting random fields on ℤd,Ann. Prob. 21:1845–1875 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgii, HO. The equivalence of ensembles for classical systems of particles. J Stat Phys 80, 1341–1378 (1995). https://doi.org/10.1007/BF02179874

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179874

Key Words

Navigation