Skip to main content
Log in

Agreement percolation and phase coexistence in some Gibbs systems

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We extend some relations between percolation and the dependence of Gibbs states on boundary conditions known for Ising ferromagnets to other systems and investigate their general validity: percolation is defined in terms of the agreement of a configuration with one of the ground states of the system. This extension is studied via examples and counterexamples, including the antiferromagnetic Ising and hard-core models on bipartite lattices, Potts models, and many-layered Ising and continuum Widom-Rowlinson models. In particular our results on the hard square lattice model make rigorous observations made by Hu and Mak on the basis of computer simulations. Moreover, we observe that the (naturally defined) clusters of the Widom-Rowlinson model play (for the WR model itself) the same role that the clusters of the Fortuin-Kasteleyn measure play for the ferromagnetic Potts models. The phase transition and percolation in this system can be mapped into the corresponding liquid-vapor transition of a one-component fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aizenman, J. Bricmont, and J. L. Lebowitz, Percolation of minority spins in high dimensional Ising models,J. Stat. Phys. 49:859–865.

  2. M. Aizenman, J. T. Chayes, L. Chayes, and C. M. Newman, Discontinuity of the magnetization in one-dimensional 1/|x−y|2 Ising and Potts models,J. Stat. Phys. 50:1–40 (1988).

    Google Scholar 

  3. R. J. Baxter, Magnetization discontinuity of the two-dimensional Potts model,J. Phys. A 15:3329–3340 (1982).

    Google Scholar 

  4. J. van den Berg, A uniqueness condition for Gibbs measures, with application to the 2-dimensional Ising antiferromagnet,Commun. Math. Phys. 152:161–166 (1993).

    Google Scholar 

  5. J. van den Berg and J. E. Steif, On the hard-core lattice gas model, percolation, and certain log networks,Stoch. Proc. Appl. 49:179–197 (1994).

    Google Scholar 

  6. J. van den Berg and C. Maes, Disagreement percolation in the study of Markov fields,Ann. Prob., to appear.

  7. J. Bricmont, J. L. Lebowitz, and C. Maes, Percolation in strongly correlated systems: The mass less Gaussian field,J. Stat. Phys. 48:1249–1268 (1987).

    Google Scholar 

  8. J. Bricmont and J. Slawny, First order phase transition and perturbation theory, inLecture Notes in Physics, Vol 257, T. C. Dorlas et al., eds. (Springer, Berlin, 1985), pp. 10–51.

    Google Scholar 

  9. M. Cassandro, G. Gallavotti, J. L. Lebowitz, and J. L. Monroe, Existence and uniqueness of equilibrium states for some spin and continuum systems,Commun. Math. Phys. 32:153–165 (1973).

    Google Scholar 

  10. A. Coniglio, C. R. Nappi, F. Peruggi, and L. Russo, Percolation and phase transitions in the Ising model,Commun. Math. Phys. 51:315–323 (1976).

    Google Scholar 

  11. R. L. Dobrushin, The problem of uniqueness of a Gibbsian random field and the problem of phase transition,Funct. Anal. Appl. 2:302–312 (1968).

    Google Scholar 

  12. R. L. Dobrushin, J. Kolafa, and S. B. Shlosman, Phase diagram of the two-dimensional Ising antiferromagnet (computer-assisted proof),Commun. Math. Phys. 102:89–103 (1985).

    Google Scholar 

  13. C. M. Fortuin and P. W. Kasteleyn, On the random cluster model. I. Introduction and relation to other models,Physica 57:536–564 (1972).

    Google Scholar 

  14. C. M. Fortuin, J. Ginibre, and P. W. Kasteleyn, Correlation inequalities on some partially ordered sets,Commun. Math. Phys. 22:89–103 (1971).

    Google Scholar 

  15. A. Gandolfi, M. Keane, and L. Russo, On the uniqueness of the infinite occupied cluster in dependent two-dimensional site percolation,Ann. Prob. 16:1147–11157 (1988).

    Google Scholar 

  16. H.-O. Georgii,Gibbs Measures and Phase Transitions (de Gruyter, Berlin, 1988).

    Google Scholar 

  17. G. R. Grimmett, The random cluster model, inProbability, Statistics and Optimisation, F. P. Kelly, ed. (Wiley, Chichester, 1994), pp. 49–63.

    Google Scholar 

  18. G. R. Grimmett, The stochastic random-cluster process and the uniqueness of random-cluster measures, Cambridge Stat. Lab. Res. Rep.98-8 (1994).

  19. Ole J. Heilmann, The use of reflection as symmetry operation in connection with Peierls' argument,Commun. Math. Phys. 36:91–114 (1974).

    Google Scholar 

  20. Chin-Kun Hu and Kit-Sing Mak, Percolation and phase transitions of hard-core particles on lattices: Monte Carlo approach,Phys. Rev. B 39:2948–2951 (1989).

    Google Scholar 

  21. Chin-Kun Hu and Kit-Sing Mak, Percolation and phase transitions of hard-core particles on lattices with pair interactions,Phys. Rev. B 42:965–968 (1990).

    Google Scholar 

  22. D. Klein and W. S. Yang, Absence of first order phase transitions for antiferromagnetic systems,J. Stat. Phys. 70:1391–1400 (1993).

    Google Scholar 

  23. J. L. Lebowitz and G. Gallavotti, Phase transitions in binary lattice gases,J. Math. Phys. 12:1129–1133 (1971).

    Google Scholar 

  24. J. L. Lebowitz and A. Martin-Löf, On the uniqueness of the equilibrium State for Ising spin systems,Commun. Math. Phys. 25:276–282 (1972).

    Google Scholar 

  25. J. L. Lebowitz and J. L. Monroe, Inequalities for higher order Ising spins and for continuum fluids,Commun. Math. Phys. 28:301–311 (1972).

    Google Scholar 

  26. S. A. Molchanov and A. K. Stepanov, Percolation in random fields I,Theor. Math. Phys. 55:478 (1983).

    Google Scholar 

  27. S. A. Pirogov and Ya. G. Sinai, Phase diagrams for classical lattice systems,Theor. Math. Phys. 25:1185–1192 (1976).

    Google Scholar 

  28. C. Preston,Random Fields (Springer-Verlag., Berlin, 1976).

    Google Scholar 

  29. D. Ruelle, Existence of a phase transition in a continuous classical system,Phys. Rev. Lett. 27:1040 (1971).

    Google Scholar 

  30. L. Russo, The infinite cluster method in the two-dimensional Ising model,Commun. Math. Phys. 67:251 (1979).

    Google Scholar 

  31. B. Simon,The Statistical Mechanics of Lattice Gases, Vol. 1 (Princeton University Press, Princeton, New Jersey, 1993).

    Google Scholar 

  32. Ya. G. Sinai,Theory of Phase Transitions: Rigorous Results (Pergamon Press, Oxford, 1982).

    Google Scholar 

  33. J. Slawny, Low temperature properties of classical lattice systems: Phase transitions and phase diagrams, inPhase Transitions and Critical Phenomena, Vol. 5, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1986).

    Google Scholar 

  34. J. C. Wheeler and B. Widom, Phase equilibrium and critical behavior in a two-component Behte-lattice gas or three-component Bethe-lattice solution,J. Chem. Phys. 52:5334–5343 (1970).

    Google Scholar 

  35. B. Widom and J. S. Rowlinson, New model for the study of liquid-vapor phase transitions,J. Chem. Phys. 52:1670 (1970).

    Google Scholar 

  36. M. Zahradník, An alternate version of Pirogov-Sinai theory,Commun. Math. Phys. 93:559–581 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giacomin, G., Lebowitz, J.L. & Maes, C. Agreement percolation and phase coexistence in some Gibbs systems. J Stat Phys 80, 1379–1403 (1995). https://doi.org/10.1007/BF02179875

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179875

Key Words

Navigation