Skip to main content
Log in

Gaussian limit for critical oriented percolation in high dimensions

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper, we consider the spread-out oriented bond percolation models inZ d ×Z withd>4 and the nearest-neighbor oriented bond percolation model in sufficiently high dimensions. Let η n ,n=1, 2, ..., be the random measures defined onR d by

$$\eta _n (A) = \sum\limits_{x \in Z^d } {1_A (x/\sqrt n )1_{\{ (0,0) \to (x,n)\} } } $$

The mean of η n , denoted by\(\bar \eta _n \), is the measure defined by

$$\bar \eta _n (A) = E_p [\eta _n (A)]$$

We use the lace expansion method to show that the sequence of probability measures\([\bar \eta _n (R^d )]^{ - 1} \bar \eta _n \) converges weakly to a Gaussian limit asn→∞ for everyp in the subcritical regime as well as the critical regime of these percolation models. Also we show that for these models the parallel correlation length\(\xi (p)~|p_c - p|^{ - 1} \) asp⇆pc

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aizenman and D. J. Barsky, Sharpness of the phase transition in percolation models,Commun. Math. Phys. 108:489–526 (1987).

    Google Scholar 

  2. M. Aizenman and C. M. Newman, Tree graph inequalities and critical behavior in percolation models,J. Stat. Phys. 36:107–143 (1984).

    Google Scholar 

  3. D. J. Barsky and M. Aizenman, Percolation critical exponents under the triangle condition.Ann. Prob. (4)19:1520–1536 (1991).

    Google Scholar 

  4. C. Bezuidenhout and G. Grimmett, The critical contact process dies out,Ann. Prob. (4)18:1462–1482 (1990).

    Google Scholar 

  5. D. Brydges, J. Fröhlich, and A. Sokal, A new proof of the existence and nontriviality of the continuum ϕ 42 and ϕ 43 quantum field theories,Commun. Math. Phys. 91:141–186 (1983).

    Google Scholar 

  6. M. Campanino, J. Chayes, and L. Chayes, Gaussian fluctuations of connectivities in the subcritical regime of percolation.Prob. Theory Related Fields (3)88:269–341 (1991).

    Google Scholar 

  7. T. J. Cox and R. Durrett, Oriented percolation in dimensionsd≥4: Bounds and asymptotic formulas,Math. Proc. Camb. Phil. Soc. 93:151–162 (1983).

    Google Scholar 

  8. R. Durrett, Some general results concerning the critical exponents of percolation processes,Z. Wahrsch. Verw. Gebiete 69:421–437 (1985).

    Google Scholar 

  9. P. Grassberger and A. De La Torre, Reggeon field theory (Schlögl's first model) on a lattice: Monte Carlo calculations of critical behaviour,Ann. Phys. 122:373–396 (1979).

    Google Scholar 

  10. T. Hara, Mean-field critical phenomena for correlation length for percolation in high dimenions,Prob. Theory Related Fields 86:337–385 (1990).

    Google Scholar 

  11. T. Hara and G. Slade, Mean-field critical phenomena for percolation in high dimensions,Commun. Math. 128:333–391 (1990).

    Google Scholar 

  12. T. Hara and G. Slade, On the upper critical dimension of lattice trees and lattice animals,J. Stat. Phys. 59:1469–1510 (1990).

    Google Scholar 

  13. T. Hara and G. Slade, Self-avoiding walk in five or more dimensions. I. The critical behaviour,Commun. Math. Phys. 147:101–136 (1992).

    Google Scholar 

  14. T. Hara and G. Slade, The lace expansion for self-avoiding walk in five or more dimensions,Rev. Math. Phys. 4:235–327 (1992).

    Google Scholar 

  15. T. Hara and G. Slade, The number and size of branched polymers in high dimensions,J. Stat. Phys. 67:1009–1038 (1992).

    Google Scholar 

  16. M. V. Menshikov,Sov. Math. Dokl. 33:856–859 (1986); see also M. V. Menshikov, S. A. Molchanov, and A. F. Sidorenko, Percolation theory and some applications,Itogi Nauki Tekhniki: Teor. Veroyatnost. Matemat. Stat. Teor. Kibernet. 24:53–110 (1980);J. Sov. Math. 42:1766–1810 (1986).

    Google Scholar 

  17. B. G. Nguyen and W. S. Yang, Triangle condition for oriented percolation in high dimensions.Ann. Prob. (4)21:1809–1844 (1993).

    Google Scholar 

  18. S. P. Obukhov, The problem of directed percolation,Physica 101A:145–155 (1980).

    Google Scholar 

  19. G. Slade, The diffusion of self-avoiding random walk in high dimensions,Commun. Math. Phys. 110:661–683 (1987).

    Google Scholar 

  20. G. Slade, The scaling limit of self-avoiding random walk in high dimensions,Ann. Prov. 17:91–107 (1989).

    Google Scholar 

  21. W. S. Yang and B. G. Nguyen, Gaussian limit for oriented percolation in high dimensions, inProceedings of the Conference on Probability Models in Mathematical Physics (World Scientific, Singapore, 1991), pp. 189–238.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, B.G., Yang, WS. Gaussian limit for critical oriented percolation in high dimensions. J Stat Phys 78, 841–876 (1995). https://doi.org/10.1007/BF02183691

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02183691

Key Words

Navigation