Skip to main content
Log in

Metastability and nucleation for the Blume-Capel model. Different mechanisms of transition

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study metastability and nucleation for the Blume-Capel model: a ferromagnetic nearest neighbor two-dimensional lattice system with spin variables taking values in {−1,0, +1}. We consider large but finite volume, small fixed magnetic fieldh, and chemical potential λ in the limit of zero temperature; we analyze the first excursion from the metastable −1 configuration to the stable +1 configuration. We compute the asymptotic behavior of the transition time and describe the typical tube of trajectories during the transition. We show that, unexpectedly, the mechanism of transition changes abruptly when the lineh=2λ is crossed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. M. Blume,Phys. Rev. 141:517 (1966).

    Google Scholar 

  2. J. Bricmont and J. SlawnyJ. Stat. Phys. 54:89 (1989).

    Google Scholar 

  3. H. W. Capel,Physica 32:96 (1966);33:295 (1967);37:423 (1967).

    Google Scholar 

  4. M. Cassandro, A. Galves, E. Olivieri, and M. E. Vares, Metastable behavior of stochastic dynamics: A pathwise approach,J. Stat. Phys. 35:603–634 (1984).

    Google Scholar 

  5. I. Dinanburg and A. E. Mazel,Commun. Math. Phys. 125:27 (1989).

    Google Scholar 

  6. T. Fig, B. M. Gorman, P. A. Rikvold, and M. A. Novotny, Numerical transfer-matrix study of a model with competing metastable states,Phys. Rev. E 50:1930 (1994).

    Google Scholar 

  7. M. I. Freidlin and A. D. Wentzell,Random Perturbations of Dynamical Systems (Springer-Verlag, Berlin, 1984).

    Google Scholar 

  8. S. N. Isakov, Nonanalytic feature of the first order phase transition in the Ising model,Commun. Math. Phys. 95:427–443 (1984).

    Google Scholar 

  9. R. Kotecky and E. Olivieri, Droplet dynamics for asymmetric ising model,J. Stat. Phys. 70:1121–1148 (1993).

    Google Scholar 

  10. R. Kotecky and E. Olivieri, Shapes of growing droplets—A model of escape from a metastable phase,J. Stat. Phys. 75:409–507 (1994).

    Google Scholar 

  11. O. Lanford and D. Ruelle, Observable at infinity and states with short range correlations in statistical mechanics,Commun. Math. Phys. 13:194–215 (1969).

    Google Scholar 

  12. F. Martinelli, E. Olivieri, and E. Scoppola Metastability and exponential approach to equilibrium for low temperature stochastic Ising models,J. Stat. Phys. 61(5/6):1105 (1990).

    Google Scholar 

  13. E. J. Neves and R. H. Schonmann, Critical droplets and metastability for a Glauber dynamics at very low temperatures,Commun. Math. Phys. 137:209 (1991).

    Google Scholar 

  14. E. J. Neves and R. H. Schonmann, Behaviour of droplets for a class of Glauber dynamics at very low temperatures,Prob. Theory Related Fields 91:331 (1992).

    Google Scholar 

  15. E. Olivieri and E. Scoppola, Markov chains with exponentially small transition probabilities: First exit, problem from a general domain—I. The reversible case,J. Stat. Phys., in press.

  16. E. Olivieri and E. Scoppola, Markov chains with exponentially small transition probabilities: First exit problem from a general domain —II. The general case, In preparation.

  17. O. Penrose and J. L. Lebowitz, Towards a rigorous molecular theory of metastability, inFluctuation Phenomena, 2nd ed., E. W. Montroll and J. L. Lebowitz, eds. (North-Holland, Amsterdam, 1987).

    Google Scholar 

  18. O. Penrose and J. L. Lebowitz, Molecular theory of metastability: An update, Appendix to Towards a rigirous molecular theory of metastability, inFluctuation Phenomena, 2nd ed., E. W. Montroll and J. L. Lebowitz, eds. (North-Holland, Amsterdam, 1987).

    Google Scholar 

  19. R. H. Schonmann, The pattern of escape from metastability of a stochastic Ising model,Commun. Math. Phys. 147:231–240 (1992).

    Google Scholar 

  20. R. H. Schonmann, Slow droplet-driven relaxation of stochastic Ising models in the vicinity of the phase coexistence region,Commun. Math. Phys. 161:1–49 (1994).

    Google Scholar 

  21. S. Shlosman and R. H. Schonmann, Preprint UC:A (1994).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cirillo, E.N.M., Olivieri, E. Metastability and nucleation for the Blume-Capel model. Different mechanisms of transition. J Stat Phys 83, 473–554 (1996). https://doi.org/10.1007/BF02183739

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02183739

Key Words

Navigation