Skip to main content
Log in

Proof of dynamical scaling in Smoluchowski's coagulation equation with constant kernel

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Smoluchowski's coagulation equation for irreversible aggregation with constant kernel is considered in its discrete version

wherec t =c 1 (t) is the concentration ofl-particle clusters at timet. We prove that for initial data satisfyingc 1(0)>0 and the condition 0 ⩽c l (0) <A (1+Δ)-l(A Δ>0), the solutions behave asymptotically likec 1 (t)∼t −2≈c(lt−1) ast→∞ withlt −1 kept fixed. The scaling function ≈c(ξ) is (1/gr)ξ, where\(\rho = \sum _l lc_l (0)\), a conserved quantity, is the initial number of particles per unit volume. An analous result is obtained for the continuous version of Smoluchowski's coagulation equation\(\frac{\partial }{{\partial t}}c(v,{\text{ }}t) = \int_0^v {du{\text{ }}c(v - u,{\text{ }}t){\text{ }}c(u,{\text{ }}t) - 2c(v,{\text{ }}t)} \int_0^\infty {du{\text{ }}c(u,{\text{ }}t)}\) wherec(v, t) is the oncentration of clusters of sizev.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Binder, Theory for the dynamics of “clusters.” II. Critical diffusion in binary systems and the kinetics of phase separation,Phys. Rev. B 15:4425–4447 (1977).

    Article  Google Scholar 

  2. J.D. Gunton, M. San Miguel, and Paramdeep S. Sahni, The dynamics of first-order phase transitions, inPhase Transitions and Critical Phenomena, Vol. 8, D. Domb and J.L. Lebowitz, eds., (Academic Press, London, 1983).

    Google Scholar 

  3. M. von Smoluchowski, Drei Vorträge über Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen.Z. Phys. 17:557–585 (1916).

    Google Scholar 

  4. M. von Smoluchowski, Versuch ciner mathematischen Theorie der Koagulationskinetik kolloider Lösungen.Z. Phys. Chem. 92:129–168 (1917).

    Google Scholar 

  5. M. H. Ernst, Exact solutions of the nonlinear Boltzmann equation and related kinetic equations, inNonequilibrium Phenomena I, The Boltzmann Equation, J. L. Lebowitz and E.W. Montroll, eds. (North-Holland, Amsterdam, 1983), pp. 51–119.

    Google Scholar 

  6. R. L. Drake, A general mathematical survey of the coagulation equation, inTopics in current Aerosol Research, Vol. 3, Part 2, G.M. Hidy and J.R. Brock, eds. (Pergamon Press, Oxford, 1972), pp. 201–376.

    Google Scholar 

  7. J. M. Ball and J. Carr, The discrete coagulation-fragmentation equations: Existence, uniqueness, and density conservation,J. Stat. Phys,61:203–234 (1990).

    Article  Google Scholar 

  8. P.C. Hohenberg and B.I. Halperin, Theory of dynamic critical phenomena,Rev. Mod. Phys. 49:435–479 (1977).

    Article  Google Scholar 

  9. P. G. J. van Dongen and M. H. Ernst, Dynamical scaling in the kinetics of clustering,Phys. Rev. Lett. 54:1396–1399 (1985).

    Article  Google Scholar 

  10. T. Viscek and F. Family, Dynamic scaling for aggregation of clusters,Phys. Rev. Lett. 52:1669–1672 (1984).

    Article  Google Scholar 

  11. S. K. Friedlander and C. S. Wang, The self-preserving particle size distribution for coagulation by Brownian motion.J. Colloid Interface Sci. 22:126–132 (1966).

    Article  Google Scholar 

  12. B. J. Olivier, C. M. Sorensen, and T. W. Taylor, Scaling dynamics of aerosol coagulation,Phys. Rev. A 45:5614–5623 (1992).

    Article  Google Scholar 

  13. T. E. W. Schuhmann, Theoretical aspects of the size distribution of fog particles.Q. J. R. Meteorol. Soc. 66:195–207 (1940).

    Google Scholar 

  14. G. M. Hidy and D. K. Lily, Solutions to the equations for the kinetics of coagulation,J. Colloid Interface Sci. 20:867–874 (1965).

    Google Scholar 

  15. A. A. Lushnikov, Evolution of coagulation systems II,J. Colloid Interface Sci. 48:400–409 (1974).

    Article  Google Scholar 

  16. P. G. J. van Dongen and M. H. Ernst, Scaling solutions of Smoluchowski's coagulation equation.J. Stat. Phys. 50:295–329 (1988).

    Article  Google Scholar 

  17. W. H. White, A global existence theorem for Smoluchowski's coagulation equation,Proc. Am. Math. Soc. 80:273–276 (1980).

    Google Scholar 

  18. A. D. Myschkis,Angewandte Mathematik für Physiker und Ingenieure (Verlag Harri Deutsch. Thun, Frankfur/Main, Germany, 1981).

    Google Scholar 

  19. M. Aizenman and T. A. Bak, Convergence to equilibrium in a system of reacting polymers,Commun. Math. Phys. 65:203–230 (1979).

    Article  Google Scholar 

  20. Z. A. Melzak, A scalar transport equation,Trans. Am. Math. Soc. 85:547–560 (1957).

    Google Scholar 

  21. I. W. Stewart, Density conservation for a coagulation equation,J. Appl. Math. Phys. (ZAMP) 42:746–756 (1991).

    Article  Google Scholar 

  22. D. V. Widder,The Laplace transform (Princeton University Press, Princeton, New Jersey, 1946).

    Google Scholar 

  23. R. M. Ziff, M. H. Ernst, and E. M. Hendriks, Kinetics of glelation and universality,J. Phys. A: Math. Gen. 16, 2293–2320 (1983).

    Article  Google Scholar 

  24. M. H. Ernst and E. M. Hendriks, Exctly soluble addition and condensation models in coagulation inetics,J. Colloid Interface Sci. 97:176–194 (1984).

    Article  Google Scholar 

  25. F. da Costa, Private communication (1993).

  26. I. M. Lifshitz and V. V. Slyozov, The kinetics of precipitation from supersaturated solid solutions,J. Phys. Chem. Solids 19:35–50 (1961).

    Article  Google Scholar 

  27. O. Penrose, J. L. Lebowitz, J. Marro, M. H. Kalos, and A. Sur, Gorwth of clusters in a first-order phase transition,J. Stat. Phys. 19:243–267 (1978).

    Article  Google Scholar 

  28. J. M. Ball, J. Carr, and O. Penrose, The Becker-Döring cluster equations: Basic properties and asymptotic behaviour of solutions,Commun. Math. Phys. 104:657–692 (1986).

    Article  Google Scholar 

  29. J. Carr, Asymptotic behaviour of solution to the coagulation-fragmentation equations. I. The weak fragmentation case.Proc. R. Soc. Edinburgh 121(A):231–244 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreer, M., Penrose, O. Proof of dynamical scaling in Smoluchowski's coagulation equation with constant kernel. J Stat Phys 75, 389–407 (1994). https://doi.org/10.1007/BF02186868

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02186868

Key Words

Navigation