Skip to main content
Log in

Central limit theorem for stochastically continuous processes. Convergence to stable limit

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

LetX={X(t), t∈[0, 1]} be a stochastically continuous cadlag process. Assume that thek dimensional finite joint distributions ofX are in the domain of normal attraction of strictlyp-stable, 0<p<2, measure onR k for all 1≤k<∞. For functionsf, g such thatΛ p (|X(xX(u)|) >g(u−s) andΛ p (|X(sX(t|)∧|X(t)−X(u|)>f(u−s), 0 ≤stu ≤ 1, conditions are found which imply that the distributions −(n −1/p(X 1+···+X n )),n≥1, converge weakly inD[0, 1] to the distribution of ap-stable process. HereX 1,X 2, ... are independent copies ofX andΛ p (Z)=sup t<0 t pP{|Z|<t} denotes the weakpth moment of a random variable Z.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen, N. T., Giné, E., and Zinn, J. (1988). The central limit theorem for empirical processes under local conditions: The case of Radon infinitely divisible limits without Gaussian component.Trans. Amer. Math. Soc. 308, 603–635.

    Google Scholar 

  2. Araujo, A., and Giné, E. (1980).The Central Limit Theorem for Real and Banach Space Valued Random Variables. Wiley, New York.

    Google Scholar 

  3. Bass, F. R., and Pyke, R. (1987). A central limit theorem forD(A)-valued processes.Stoch. Proc. Appl. 24, 109–131.

    Google Scholar 

  4. Bentkus, V., Götze, F., Paulauskas, V., and Račkauskas, A. (1991). The accuracy of Gaussian approximation in Banach spaces. In Gamkrelidze, R. V. (ed.), Itogi nauki i tehniki. V.81. Probability Theory-6. Limit Theorems of Probability Theory. VINITI, Moscow, pp. 39–139. (In Russian). English translation inEncyclopedia of Mathematical Sciences, Springer (to appear).

    Google Scholar 

  5. Bézandry, P. H., and Fernique, X. (1992). Sur la propriété de la limite central dansD[0, 1].Ann. Inst. H. Poincaré,28, 31–46.

    Google Scholar 

  6. Billingsley, P. (1968).Convergence of Probability Measures. Wiley, New York.

    Google Scholar 

  7. Bloznelis, M., and Paulauskas, V. (1993). On the central limit theorem inD[0, 1].Stat. Prob. Letters 17, 105–111.

    Google Scholar 

  8. Bloznelis, M., and Paulauskas, V. (1994). A note on the central limit theorem for stochastically continuous processes.Stoch. Proc. Appl. 53, 351–361.

    Google Scholar 

  9. Dehling, D., Denker, H., and Woyczyński, W. (1990). ResamplingU-statistics usingp-stable laws.J. Multivar. Analysis 34, 1–13.

    Google Scholar 

  10. Feller, W. (1971).An Introduction to Probability Theory and Its Applications. Vol. II. Wiley, New York.

    Google Scholar 

  11. Fernique, X. (1994). Les fonctions aléatoires cadlag, la compacité de leurs lois.Liet. Matem. Rink. 34, 288–306.

    Google Scholar 

  12. Giné, E., and Zinn, J. (1984). Some limit theorems for empirical processes.Ann. Prob. 12, 929–989.

    Google Scholar 

  13. Giné, E., and Marcus, M. B. (1983). The central limit theorem for stochastic integrals with respect to Levy process.Ann. Prob. 11, 58–77.

    Google Scholar 

  14. Giné, E., Marcus, M. B., and Zinn, J. (1990). On random multipliers in the central limit theorem withp-stable limit, 0<p<2. In Haagerup, U., Hoffmann-Jorgensen, J., and Nielsen, N. J. (eds.).Probability in Banach Spaces 6. Birkhäuser, Boston, Basel, Berlin pp. 120–149.

    Google Scholar 

  15. Hahn, M. (1977a). Conditions for sample-continuity and the central limit theorem.Ann. Prob. 5, 351–360.

    Google Scholar 

  16. Hahn, M. (1977b). A note on the central limit theorem for square-integrable processes.Proc. Amer. Math. Soc. 64, 331–334.

    Google Scholar 

  17. Hahn, M. (1978). Central limit theorem inD[0, 1].Z. Wahr. verw. Gebiete 44, 89–101.

    Google Scholar 

  18. Hoffmann-Jorgensen, J. (1974). Sums of independent Banach space valued random variablesStudia Mathematica 52, 159–186.

    Google Scholar 

  19. Juknevičiene, D. (1985). Central limit theorem in the spaceD[0, 1].Lithuanian Math. J. 25, 293–298.

    Google Scholar 

  20. Ledoux, M., and Talagrand, M. (1991).Probability in Banach Spaces. Springer, Berlin/Heidelberg, New York.

    Google Scholar 

  21. Marcus, M. B., and Woyczyński, W. A. (1979). Stable measures and central limit theorems in spaces of stable type.Trans. Amer. Math. Soc. 251, 71–102.

    Google Scholar 

  22. Marcus, M. B., and Pisier, G. (1984). Some results on the continuity of stable processes and the domain of attraction of continuous stable processes.Ann. Inst. H. Poincaré 20, 177–199.

    Google Scholar 

  23. Paulauskas, V., and Stieve, Ch. (1990). On the central limit theorem inD[0, 1] andD([0, 1],H).Liet. Matem. Rink. 30, 567–579.

    Google Scholar 

  24. Pisier, G. (1986). Probabilistic methods in the geometry of Banach spaces. InProbability and Analysis. Lecture Notes in Mathematics, Vol. 1206. Springer, Berlin/Heidelberg, pp. 167–241.

    Google Scholar 

  25. Rosiński, J. (1980). Remarks on Banach spaces of the stable type.Prob. Math. Stat. 1, 67–71.

    Google Scholar 

  26. Vakhania, N. N., Tarieladze, V. I., and Chobanyan, S. A. (1987).Probability Distributions on Banach Spaces. Reidel, Dordrecht.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bloznelis, M. Central limit theorem for stochastically continuous processes. Convergence to stable limit. J Theor Probab 9, 541–560 (1996). https://doi.org/10.1007/BF02214074

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02214074

Key Words

Navigation