Skip to main content
Log in

The local time of iterated Brownian motion

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We define and study the local time process {L *(x,t);x∈ℝ1,t≥0} of the iterated Brownian motion (IBM) {H(t):=W 1(|W 2 (t)|); t≥0}, whereW 1(·) andW 2(·) are independent Wiener processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arcones, M. A. (1995). On the law of the iterated logarithm for Gaussian processes and their compositions.J. Theoret. Prob. 8, 877–903.

    Google Scholar 

  2. Bertoin, J. (1994). Iterated Brownian motion and stable (1/4) subordinator. (Preprint).

  3. Borodin, A. N. (1989). Brownian local time (in Russian).Uspehi Mat. Nauk (N.S.)44, (2)(266), 7–48. English translation:Russian Math. Surveys 44, 2, 1–51.

    Google Scholar 

  4. Burdzy, K. (1993). Some path properties of iterated Brownian motion. In Cinlar, E., Chung, K. L., and Sharpe, M. (eds.),Seminar on Stochastic Processes 1992, Birkhäuser, Boston, pp. 67–87.

    Google Scholar 

  5. Burdzy, K. (1994). Variation of iterated Brownian motion. Workshop and Conference on Measure-valued Processes, Stochastic Partial Differential Equations and Interacting Systems. In Dawson, D. A. (ed.),CRM Proceedings and Lecture Notes 5, pp. 35–53.

  6. Burdzy, K., and Khoshnevisan, D. (1995). The level sets of iterated Brownian motion.Probabilities XXIX, Lecture Notes in Math. 1613, pp. 231–236.

  7. Csáki, E., Csörgő, M., Földes, A., and Révész, P. (1983). How big are the increments of the local time of a Wiener process?Ann. Prob. 11, 593–608.

    Google Scholar 

  8. Csáki, E., Csörgő, M., Földes, A., and Révész, P. (1989). Brownian local time approximated by a Wiener sheet.Ann. Prob. 17, 516–537.

    Google Scholar 

  9. Csáki, E., Csörgő, M., Földes, A., and Révész, P. (1992). Strong approximation of additive functionals.J. Theoret. Prob. 5, 679–706.

    Google Scholar 

  10. Csáki, E., Csörgő, M., Földes, A., and Révész, P. (1995). Global Strassen-type theorems for iterated Brownian motions.Stoch. Proc. Appl. 59, 321–341.

    Google Scholar 

  11. Csáki, E., and Földes, A. (1986). How small are the increments of the local time of a Wiener process?Ann. Prob. 14, 533–546.

    Google Scholar 

  12. Csáki, E., and Földes, A. (1987). A note on the stability of the local time of a Wiener process.Stoch. Proc. Appl. 25, 203–213.

    Google Scholar 

  13. Csörgő, M., Földes, A., and Révész, P. (1993). How to investigate the iterated Brownian motion by Strassen's method? Technical Report Service Laboratory Research Statistical Probability No. 236-1993, Carleton University, University of Ottawa.

  14. Deheuvels, P., and Mason, D. M. (1992). A functional LIL approach to pointwise Bahadur-Kiefer theorems. In Dudley, R. M., Hahn, M. G., and Kuelbs, J. (eds.),Probability in Banach Spaces 8, Birkhäuser, Boston, pp. 255–266.

    Google Scholar 

  15. Dobrushin, R. L. (1955). Two limit theorems for the simplest random walk on a line (in Russian).Uspehi Mat. Nauk (N.S.)10, (3)(65), 139–146.

    Google Scholar 

  16. Funaki, T. (1979). Probabilistic construction of the solution of some higher order parabolic differential equations.Proc. Japan Acad. 55, 176–179.

    Google Scholar 

  17. Hu, Y., Pierre-Loti-Viaud, D., and Shi, Z. (1995). Laws of the iterated logarithm for iterated Wiener processes.J. Theoret. Prob. 8, 303–319.

    Google Scholar 

  18. Hu, Y., and Shi, Z. (1995). The Csörgő-Révész modulus of non-differentiability of iterated Brownian motion.Stoch. Proc. Appl. 58, 267–279.

    Google Scholar 

  19. Kesten, H. (1965). An iterated logarithm law for local time.Duke Math. J. 32, 447–456.

    Google Scholar 

  20. Khoshnevisan, D., and Lewis, T. M. (1996). A uniform modulus result for iterated Brownian motion.J. Theoret. Prob.

  21. Khoshnevisan, D., and Lewis, T. M. (1996). Chung's law of the iterated logarithm for iterated Brownian motion.Ann. Inst. H. Poincaré.

  22. Kiefer, A. (1967). On Bahadur's representation of sample quantiles.Ann. Math. Statist. 38, 1323–1342.

    Google Scholar 

  23. Lévy, P. (1937).Théorie de l'Addition des Variables Aléatoires, Gauthier-Villars, Paris.

    Google Scholar 

  24. Lévy, P. (1948).Processus Stochastiques et Mouvement Brownian, Gauthier-Villars, Paris.

    Google Scholar 

  25. Perkins, E. (1981a). On the iterated logarithm law for local time.Proc. Amer. Math. Soc. 81, 470–472.

    Google Scholar 

  26. Perkins, E. (1981b). The exact Hausdorff measure of the level sets of Brownian motion.Z. Wahrsch. verw. Gebiete 58, 373–388.

    Google Scholar 

  27. Rényi, A. (1970).Probability Theory, North Holland, Amsterdam and Akadémiai Kiadó, Budapest.

    Google Scholar 

  28. Révész, P. (1981). Local time and invariance. In:Lecture Notes in Mathematics 861, Analytical Methods in Probability Theory, Proceedings, Oberwolfach, Germany (1980), pp. 128–145.

  29. Révész, P. (1990).Random Walk in Random and Non-Random Environments, World Scientific, Singapore.

    Google Scholar 

  30. Shi, Z. (1995). Lower limits of iterated Wiener processes.Statist. Prob. Letters 23, 259–270.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by Hungarian National Foundation for Scientific Research, Grant No. T 016384.

Research supported by an NSERC Canada Grant at Carleton University, Ottawa.

Research supported by a PSC CUNY Grant, No. 6-66364.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Csáki, E., Csörgó, M., Földes, A. et al. The local time of iterated Brownian motion. J Theor Probab 9, 717–743 (1996). https://doi.org/10.1007/BF02214084

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02214084

Key Words

Navigation