Skip to main content
Log in

Limit theorems for compact two-point homogeneous spaces of large dimensions

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Let\(\mathbb{K}\) be the field ℝ, ℂ, or ℍ of real dimension ν. For each dimensiond≥2, we study isotropic random walks(Y 1)1≥0 on the projective space\(\mathbb{P}^d (\mathbb{K})\) with natural metricD where the random walk starts at some\(x_0^d \in \mathbb{P}^d (\mathbb{K})\) with jumps at each step of a size depending ond. Then the random variablesX d1 :=cosD(Y d1 ,x d0 ) form a Markov chain on [−1, 1] whose transition probabilities are related to Jacobi convolutions on [−1, 1]. We prove that, ford→∞, the random variables (vd/2)(X d l(d) +1) tend in distribution to a noncentralχ 2-distribution where the noncentrality parameter depends on relations between the numbers of steps and the jump sizes. We also derive another limit theorem for\(\mathbb{P}^d (\mathbb{K})\) as well as thed-spheresS d ford→∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Askey, R. (1975). Orthogonal polynomials and special functions.SIAM.

  2. Billingsley, P. (1979).Probability and Measure. Wiley.

  3. Bingham, N. H. (1972). Random walks on spheres.Z. Wahrsch. verw. Geb. 22, 169–192.

    Google Scholar 

  4. Bloom, W. R., Heyer, H. (1994).Harmonic Analysis of Probability Measures on Hypergroups. De Gruyter.

  5. Diaconis, P. (1988). Group representations in probability and statistics. Institute of Mathematical Statistics, Hayward, California.

    Google Scholar 

  6. Diaconis, P., Graham, R. L., and Morrison, J. A. (1990). Asymptotic analysis of a random walk on a hypercube with many dimensions.Random Struct. Alg. 1, 51–72.

    Google Scholar 

  7. Gangolli, R. (1967). Positive definite kernels on homogeneous spaces and certain stochastic processes related to Levy's Brownian motion of several parameters.Ann. Inst. Poincare B3, 121–226.

    Google Scholar 

  8. Gasper, G. (1971). Positivity and convolution structure for Jacobi series.Ann. Math. 93, 112–118.

    Google Scholar 

  9. Gasper, G. (1972). Banach algebras for Jacobi series and positivity of a kernel.Ann. Math. 95, 261–280.

    Google Scholar 

  10. Helgason, S. (1962).Differential Geometry and Symmetric Spaces. Academic Press.

  11. Jewett, R. I. (1975). Spaces with an abstract convolution of measures.Adv. Math. 18, 1–101.

    Google Scholar 

  12. Johnson, N. L., and Kotz, S. (1970).Distributions in Statistics: Continuous Univariate Distributions 2. J. Wiley and Sons.

  13. Lasser, R. (1983). Orthogonal polynomials and hypergroups.Rend. Math. Appl. 3, 185–209.

    Google Scholar 

  14. Mitrinovic, D. S. (1970).Analytic Inequalities. Springer.

  15. Szegö, G. (1959).Orthogonal Polynomials. Am. Math. Soc. Coll. Publ. 23. Providence, Rhodes Island, Amer. Math. Soc.

    Google Scholar 

  16. Tiku, M. L. (1965). Laguerre series forms of non-centralχ 2 andF distributions.Biometrika 52, 415–427.

    Google Scholar 

  17. Voit, M. (1990). Central limit theorems for a class of polynomial hypergroups.Adv. Appl. Prob. 22, 68–87.

    Google Scholar 

  18. Voit, M. (1991). Pseudoisotropic random walks on free groups and semigroups.J. Multiv. Analysis 38, 275–293.

    Google Scholar 

  19. Voit, M. (1995). Central limit theorems for Jacobi hypergroups. InApplications of Hypergroups and Related Measure Algebras, Joint Summer Research Conference, Seattle, 1993.Contemp. Math. 183, 395–411.

  20. Voit, M. (1995). A central limit theorem for isotropic random walks onn-spheres forn→∞.J. Math. Anal. Appl. 189, 215–224.

    Google Scholar 

  21. Voit, M. (1995). Limit theorems for random walks on the double coset spacesU(n)//U(n−1) forn→∞.J. Comp. Appl. Math. Vol. 65 (to appear).

  22. Voit, M. (1995). Asymptotic distributions for the Ehrenfest urn and related random walks.J. Appl. Prob. Vol. 33, No. 3 (to appear).

  23. Voit, M. (1996). A limit theorem for isotropic random walks on ℝd ford→∞. preprint.

  24. Wang, H. (1952). Two-point homogeneous spaces.Ann. Math. 55, 177–191.

    Google Scholar 

  25. Zeuner, Hm. (1989). One-dimensional hypergroups.Adv. Math. 76, 1–18.

    Google Scholar 

  26. Zeuner, Hm. (1989). The central limit theorem for Chebli-Trimeche hypergroups.J. Th. Prob. 2, 51–63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voit, M. Limit theorems for compact two-point homogeneous spaces of large dimensions. J Theor Probab 9, 353–370 (1996). https://doi.org/10.1007/BF02214654

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02214654

Key Words

Navigation