Skip to main content
Log in

Nash inequalities for finite Markov chains

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

This paper develops bounds on the rate of decay of powers of Markov kernels on finite state spaces. These are combined with eigenvalue estimates to give good bounds on the rate of convergence to stationarity for finite Markov chains whose underlying graph has moderate volume growth. Roughly, for such chains, order (diameter) steps are necessary and suffice to reach stationarity. We consider local Poincaré inequalities and use them to prove Nash inequalities. These are bounds onl 2-norms in terms of Dirichlet forms andl 1-norms which yield decay rates for iterates of the kernel. This method is adapted from arguments developed by a number of authors in the context of partial differential equations and, later, in the study of random walks on infinite graphs. The main results do not require reversibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakry, D., Coulhon, T., Ledoux, M., and Saloff-Coste, L. (1995). Sobolev inequalities in disguise. Université Paul Sabtier, Toulouse.Stat. et. Prob., Preprint.

    Google Scholar 

  2. Carlen, E., Kusuoka, S., and Stroock, D. (1987). Upper bounds for symmetric Markov transition functions.Ann. Inst. H. Poincaré, Prob. Stat. 23, 245–287.

    Google Scholar 

  3. Chung, F., Diaconis, P., and Graham, R. (1987). A random walk problem arising in random number generation.Ann. Prob. 15, 1148–1165.

    Google Scholar 

  4. Coulhon, T., and Saloff-Coste, L. (1990a). Puissance d'un opérateur regularisant.Ann. Inst. H. Poincaré, Prob. Stat. 26, 419–436.

    Google Scholar 

  5. Coulhon, T., and Saloff-Coste, L. (1990b). Marches aléatoires non-symétriques sur les groupes unimodulaires.C. R. Acad. Sci. Paris, Série I,310, 627–630.

    Google Scholar 

  6. Coulhon, T., and Saloff-Coste, L. (1993). Isopérimétrie sur les groupes et les variétés.Rev. Mat. Iberoamericana,9, 293–314.

    Google Scholar 

  7. Diaconis, P. (1982).Applications of Non-Commutative Fourier Analysis to Probability Problems. Springer L.N.M.1362, 51–100.

    Google Scholar 

  8. Diaconis, P. (1986).Group Representations in Probability and Statistics. IMS, Hayward.

    Google Scholar 

  9. Diaconis, P., and Saloff-Coste, L. (1933a). Comparison theorems for reversible Markov chains.Ann. Appl. Prob. 3, 696–730.

    Google Scholar 

  10. Diaconis, P., and Saloff-Coste, L. (1993b). Comparison techniques for random walk on finite groups.Ann. Prob. 21, 2131–2156.

    Google Scholar 

  11. Diaconis, P., and Saloff-Coste, L. (1994a). Moderate growth and random walk on finite groups.Geom. and Funct. Anal. 4, 1–34.

    Google Scholar 

  12. Diaconis, P., and Saloff-Coste, L. (1995). An application of Harnack inequalities to random walk on nilpotent quotients. Actes du Colloque en l'honneur de J. P. Kahane.J. Fourier Anal. Appl. (special Kahane issue) 189–208.

  13. Diaconis, P., and Saloff-Coste, L. (1992). Logarithmic Sobolev inequalities and finite Markov chains.Annals Apol. Prob. (to appear).

  14. Diaconis, P., and Saloff-Coste, L. (1994c). Geometric bounds on character ratios and symmetric functions. Manuscript.

  15. Diaconis, P., and Shashahani, M. (1981). Generating a random permutation with random transpositions.Z. Wahrsch. Verw. Geb. 57, 159–179.

    Google Scholar 

  16. Diaconis, P., and Stroock, D. (1991). Geometric bounds for eigenvalues for Markov chains.Ann. Appl. Prob. 1, 36–61.

    Google Scholar 

  17. Diaconis, P., and Sturmfels, B. (1993). Algebraic algorithms for sampling from conditional distributions.Ann. Stat. (to appear).

  18. Dyer, M., and Frieze, A. (1991). Computing the volume of convex bodies: a case where randomness proveably helps. In Bollobàs, B. (ed.),Probabilistic Combinatorics and Its Applications, Proc. Symp. Appl. Math. 44, 123–170.

  19. Fabes, E. (1993). Gaussian upper bounds on fundamental solutions of parabolic equations: the method of Nash. InDirichlet Forms, L.N.M. Springer, p. 163.

  20. Feller, W. (1968).An Introduction to Probability Theory and Its Applications, Vol. I, Third Edition J. Wiley and Sons.

  21. Fill, J. (1991). Eigenvalue bounds on convergence to stationarity for nonreveresible Markov chains with an application to the exclusion process.Ann. Appl. Prob. 1, 62–87.

    Google Scholar 

  22. Gohberg, I., and Krein, I. (1969). Introduction to the theory of linear non-selfadjoint operators. Providence.Amer. Math. Soc.

  23. Hildebrand, M. (1992). Generating random elements in SL n (F q ) by random transvections.J. Alg. Combinatorics 1, 133–150.

    Google Scholar 

  24. Horn, R., and Johnson, C. (1990).Topics in Matrix Analysis. Cambridge University Press.

  25. Jerrum, M., and Sinclair, A. (1989). Approximating the permanent.SIAM J. Comp. 18, 1149–1178.

    Google Scholar 

  26. Lawler, G., and Sokal, A. (1988). Bounds on theL 2 spectrum for Markov chains and Markov processes: A generalization of Cheeger's inequality.Trans. Amer. Math. Soc. 309, 557–580.

    Google Scholar 

  27. Lovasz, L., and Simonovits, M. (1990). Random walks in a convex body and an improved volume algorithm.Random Struct. and Algo. 4, 359–412.

    Google Scholar 

  28. Mihail, E. (1989). Combinatorial aspects of expanders. Ph.D. dissertation, Department Computer Sciences, Harvard University.

  29. Nash, J. (1958). Continuity of solutions of parabolic and elliptic equations.Amer. J. Math. 80, 931–954.

    Google Scholar 

  30. Marshall, A., and Olkin, I. (1979).Inequalities: The Theory of Majorization and Its Applications. Academic Press, New York.

    Google Scholar 

  31. Robinson, D. (1991).Elliptic Operators on Lie Groups. Oxford University Press.

  32. Sinclair, A., and Jerrum, M. (1989). Approximate counting, uniform generation and rapidly mixing Markov chains.Inform. and Comput. 82, 93–133.

    Google Scholar 

  33. Sinclair, A. (1993).Algorithms for Random Generation and Counting: A Markov Chain Approach. Birkhäuser, Boston.

    Google Scholar 

  34. Stein, E., and Weiss, G. (1971).Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press.

  35. Varopoulos, N. (1984). Une généralisation du théorème de Hardy-Littlewood-Sobolev pour les espaces de Dirichlet.C. R. Acad. Sc. Paris, Série I,299, 651–654.

    Google Scholar 

  36. Varopoulos, N. (1985). Isoperimetric inequalities and Markov chains.J. Funct. Anal. 63, 215–239.

    Google Scholar 

  37. Varopoulos, N., Saloff-Coste, L., and Coulhon, T. (1993).Analysis and Geometry on Groups. Cambridge University Press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diaconis, P., Saloff-Coste, L. Nash inequalities for finite Markov chains. J Theor Probab 9, 459–510 (1996). https://doi.org/10.1007/BF02214660

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02214660

Key Words

Navigation