Skip to main content
Log in

Uniform persistence and flows near a closed positively invariant set

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, the behavior of a continuous flow in the vicinity of a closed positively invariant subset in a metric space is investigated. The main theorem in this part in some sense generalizes previous results concerning classification of the flow near a compact invariant set in a locally compact metric space which was described by Ura-Kimura (1960) and Bhatia (1969). By applying the obtained main theorem, we are able to prove two persistence theorems. In the first one, several equivalent statements are established, which unify and generalize earlier results based on Liapunov-like functions and those about the equivalence of weak uniform persistence and uniform persistence. The second theorem generalizes the classical uniform persistence theorems based on analysis of the flow on the boundary by relaxing point dissipativity and invariance of the boundary. Several examples are given which show that our theorems will apply to a wider varity of ecological models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bhatia, N. P. (1969). Dynamical systems. In Kuhn, H. W., and Szegö, G. P. (eds.),Mathematical Systems Theory and Economics, Springer-Verlag, New York, pp. 1–10.

    Google Scholar 

  • Bhatia, N. P. (1970). Attraction and non-saddle sets in dynamical systems.J. Diff. Eqs. 8, 229–249.

    Google Scholar 

  • Bhatia, N. P., and Szegö, G. P. (1970).Stability Theory of Dynamical Systems, Springer-Verlag, Berlin.

    Google Scholar 

  • Butler, G. J., and Waltman, P. (1986). Persistence in dynamical systems.J. Diff. Eqs. 63, 255–263.

    Google Scholar 

  • Butler, G. J., Freedman, H. I., and Waltman, P. (1986). Uniformly persistent systems.Proc. Am. Math. Soc. 96, 425–430.

    Google Scholar 

  • Conley, C. (1978).Isolated Invariant Sets and the Morse Index, CBMS, Vol. 38, Providence, RI.

  • Dunbar, S. R., Rybakowski, K. P., and Schmitt, K. (1986). Persistence in models of predatorprey populations with diffusion.J. Diff. Eqs. 65, 117–138.

    Google Scholar 

  • Fernandes, M., and Zanolin, F. (1990). Repelling conditions for boundary sets using Liapunov-like functions. II. Persistence and periodic solutions.J. Diff. Eqs. 86, 33–58.

    Google Scholar 

  • Fonda, A. (1988). Uniformly persistent semidynamical systems.Proc. Am. Math. Soc. 104, 111–116.

    Google Scholar 

  • Freedman, H. I., and Moson, P. (1990). Persistence definitions and their connections.Proc. Am. Math. Soc. 109, 1025–1033.

    Google Scholar 

  • Freedman, H. I., and Ruan, S. (1994). Uniform persistence in functional differential equations.J. Diff. Eqs. (in press).

  • Freedman, H. I., and So, J. (1989). Persistence in discrete semidynamical systems.SIAM J. Math. Anal. 20, 930–938.

    Google Scholar 

  • Freedman, H. I., and Waltman, P. (1984). Persistence in models of three interacting predatorprey populations.Math. Biosci. 68, 213–231.

    Google Scholar 

  • Garay, B. M. (1989). Uniform persistence and chain recurrence.J. Math. Anal. Appl. 139, 372–381.

    Google Scholar 

  • Gard, T. C. (1987). Uniform persistence in multispecies population models.Math. Biosci. 85, 93–104.

    Google Scholar 

  • Gard, T. C., and Hallam, T. G. (1979). Persistence of food webs. I. Lotka-Volterra food chains.Bull. Math. Biol. 41, 877–891.

    Google Scholar 

  • Hale, J. K. (1988).Asymptotic Behavior of Dissipative Systems, Am. Math. Soc., Providence, RI.

  • Hale, J. K., and Waltman, P. (1989). Persistence in infinite dimensional systems.SIAM J. Math. Anal. 20, 388–395.

    Google Scholar 

  • Hethcote, H. W., and van den Driessche, P. (1991). Some epidemiological models with nonlinear incidence.J. Math. Biol. 29, 271–287.

    Google Scholar 

  • Hofbauer, J. (1981). A general cooperation theorem for hypercycles.Monatsh. Math. 91, 233–240.

    Google Scholar 

  • Hofbauer, J. (1989). A unified approach to persistence.Acta Appl. Math. 14, 11–22.

    Google Scholar 

  • Hofbauer, J., and Sigmund, K. (1988).Dynamical Systems and the Theory of Evolution, Cambridge University Press, Cambridge.

    Google Scholar 

  • Hofbauer, J., and So, J. (1989). Uniform persistence and repellers for maps.Proc. Am. Math. Soc. 107, 1137–1142.

    Google Scholar 

  • Hutson, V. (1984). A theorem on average Liapunov functions.Monatsh. Math. 98, 267–275.

    Google Scholar 

  • Hutson, V., and Schmitt, K. (1992). Permanence and the dynamics of biological systems.Math. Biosci. 111, 1–71.

    Google Scholar 

  • Liu, W. M., Hethcote, H. W., and Levin, S. A. (1987). Dynamical behavior of epidemiological models with nonlinear incidence rates.J. Math. Biol. 25, 359–380.

    Google Scholar 

  • Sell, G. R. (1967). Nonautonomous differential equations and topological dynamics. I. The basic theory.Trans. Am. Math. Soc. 127, 247–262.

    Google Scholar 

  • Sell, G. R., and Sibuya, Y. (1967). Behavior of solutions near a critical point. In Harris, W. A., Jr., and Sibuya, Y. (eds.),Proceedings United States-Japan Seminar on Differential and Functional Equations, Benjamin, New York, pp. 501–506.

    Google Scholar 

  • Tang, M. (1990). Persistence in a higher dimensional population dynamical systems.Acta Math. Appl. Sinica 13, 431–443.

    Google Scholar 

  • Teng, Z.-D., and Duan, K.-C. (1990). Persistence in dynamical systems.Q. Appl. Math. 48, 463–472

    Google Scholar 

  • Thieme, H. R. (1993). Persistence under relaxed point-dissipativity (with application to an endemic model).SIAM J. Math. Anal. 24, 407–435.

    Google Scholar 

  • Ura, T., and Kimura, I. (1960). Sur le courant extérieur à une région invariante: Théorème de Bendixson.Comm. Math. Univ. St. Paul 8, 23–39.

    Google Scholar 

  • Waltman, P. (1992). A brief survey of persistence in dynamical systems. In Busenberg, S., and Martelli, M. (eds.),Delay Differential Equations and Dynamical Systems, Springer-Verlag, New York, pp. 31–40.

    Google Scholar 

  • Whyburn, G. T. (1942).Analytic Topology, Am. Math. Soc. Colloq. Publ. Vol. 28, Providence, RI.

  • Yang, F., and Ruan, S. (1992). A generalization of the Butler-McGehee lemma and its applications in persistence theory. Preprint

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freedman, H.I., Ruan, S. & Tang, M. Uniform persistence and flows near a closed positively invariant set. J Dyn Diff Equat 6, 583–600 (1994). https://doi.org/10.1007/BF02218848

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02218848

Key words

AMS Subject Classifications

Navigation