Skip to main content
Log in

Recurrence relations for rational cubic methods II: The Chebyshev method

Rekursions-Beziehungen für rationale kubische Verfahren II: Die Chebyshev Methode

  • Published:
Computing Aims and scope Submit manuscript

Abstract

We continue the analysis of rational cubic methods, initiated in [7]. In this paper, we obtain a system of a priori error bounds for the Chebyshev method in Banach spaces through a local convergence theorem that provides sufficient conditions on the initial point in order to ensure the convergence of Chebyshev iterates. The error estimates are exact for second degree polynomials. We also discuss some applications.

Zusammenfassung

Wir betrachten ein System von a priori Fehlerabschätzungen für die Konvergenz des Chebyshev-Verfahrens in, Banachräumen. Unsere Sätze geben hinreichende Bedingungen an, den Startwert, welche die Konvergenz der Chebyshev-Iteration sichern. Sie bestehen aus einem System rekursiver Beziehungen, ähnlich den Bedingungen von Kantorvich für das Newton-Verfahren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alefeld, G., On the convergence of Halley's method. Amer. Math. Monthly,88, 530–536 (1981).

    Google Scholar 

  2. Altman, M., Iterative methods of higher order. Bull. Acad. Pollon., Sci. (Série des sci. math., astr., phys.),IX, 62–68 (1961).

    Google Scholar 

  3. Borwein, J. M., Borwein, P. B., On the complexity of familiar functions and numbers. SIAM Rev.30, 4, 589–601 (1988).

    Google Scholar 

  4. Brent, R., On the addition of binary numbers. IEEE Trans. on Comp.,C-19, 758–759 (1970).

    Google Scholar 

  5. Brent, R., Fast multiple-precision evaluation of elementary functions. J. of the Association for Computing Machinery,23, 2, 242–251 (1976).

    Google Scholar 

  6. Brown, G. H., On Halley's variation of Newton's Method. Amer. Math. Monthly,84, 726–727 (1977).

    Google Scholar 

  7. Candela, V. F., Marquina, A., Recurrence relations, for rational cubic methods I: the Halley method. Computing44, 169–184 (1990).

    Google Scholar 

  8. Döring, B., Einige Sätze über das Verfahren der tangierenden Hyperbeln in Banach-Räumen. Aplikace Mat.,15, 418–464 (1970).

    Google Scholar 

  9. Ehrmann, H., Konstruktion und Durchfürung von Iterationsverfahren höherer Ordnung. Arch. Rational Mech. Anal.,4, 65–88 (1959).

    Google Scholar 

  10. Gander, W., On Halley's iteration method. Amer. Math. Monthly,92, 131–134 (1985).

    Google Scholar 

  11. Hansen, E., Patrick, M., A Family of root finding methods. Numer. Math.,27, 257–269 (1977).

    Google Scholar 

  12. Kantorovich, L. V., Akilov, G. P., Functional analysis in normed spaces. Ex. Oxford: Pergamon 1964.

    Google Scholar 

  13. Knuth, D., Seminumerical algorithms, 2nd edn. Reading. Mass. Addison Wesley (1981).

    Google Scholar 

  14. Krishnamurthy, E. V., On optimal iterative schemes for high-speed division. IEEE Trans. on Comp.,C-19, 3, 227–231 (1970).

    Google Scholar 

  15. Miel, G. J. The Kantorovich Theorem with optimal error bounds., Amer. Math. Monthly,86, 212–215 (1979).

    Google Scholar 

  16. Miel, G. J., An updated version of the Kantorovich theorem for Newton's method. Computing,27, 237–244 (1981).

    Google Scholar 

  17. Ortega, J. M., The Newton-Kantorovich theorem. Amer. Math. Monthly,75, 658–660 (1968).

    Google Scholar 

  18. Ortega, J. M., Rheinboldt, W. C., Iterative solution of nonlinear equations in several variables. New York: Academic Press 1970.

    Google Scholar 

  19. Potra, F. A., Pták, V., Sharp error bounds for Newton's process. Numer. Math.,34, 63–72 (1980).

    Google Scholar 

  20. Potra, F. A., Pták, V., Nondiscrete induction and iterative processes. Research Notes in Mathematics,103 Ed. Boston: Pitman 1984.

    Google Scholar 

  21. Tapia, R. A., The Kantorovich theorem for Newton's method. Amer. Math. Monthly,78, 389–392 (1971).

    Google Scholar 

  22. Taylor, A. Y., Lay, D., Introduction to functional analysis, 2nd edn. New York: J. Wiley, 1980.

    Google Scholar 

  23. Yamamoto, T., A method for finding sharp error bounds for Newton's Method under the Kantorovich Assumptions. Numer. Math.,49, 203–220 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is part of the PhD dissertation, realized under the direction, of the second named author.

Supported in part by C.A.I.C.Y.T. GR85-0035. University of Valencia (Spain).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Candela, V., Marquina, A. Recurrence relations for rational cubic methods II: The Chebyshev method. Computing 45, 355–367 (1990). https://doi.org/10.1007/BF02238803

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02238803

AMS Subject Classification (1980)

Key words

Navigation