Skip to main content
Log in

Recurrence relations for rational cubic methods I: The Halley method

Rekursions-Beziehungen für rationale kubische Verfahren I: Das Halley-Verfahren

  • Published:
Computing Aims and scope Submit manuscript

Abstract

In this paper we present a system of a priori error bounds for the Halley method in Banach spaces. Our theorem supplies sufficient conditions on the initial point to ensure the convergence of Halley iterates, by means of a system of “recurrence relations”, analogous to those given for the Newton method by Kantorovich, improving previous results by Döring [4]. The error bounds presented are optimal for second degree polynomials. Other rational cubic methods, as the Chebyshev method, will be treated in a subsequent paper.

Zusammenfassung

Wir betrachten ein System von a priori Fehlerabschätzungen für die Konvergenz des Halley-Verfahrens in Banachräumen. Unsere Sätze geben hinreichende Bedingungen an den Startwert, welche die Konvergenz der Halley-Iteration sichern. Sie bestehen aus einem System rekursiver Beziehungen, ähnlich den Bedingungen von Kantorovich für das Newton-Verfahren. Weitere rationale kubische Verfahren werden in einer künftigen Arbeit untersucht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alefeld, G.: On the Convergence of Halley's Method. Amer. Math. Monthly,88, 530–536 (1981)

    Google Scholar 

  2. Brown, G. H.: On Halley's variation of Newton's Method. Amer. Math. Monthly,84, 726–727 (1977)

    Google Scholar 

  3. Davies, M. and Dawson, B.: On the global convergence of Halley'siteration formula. Num. Math.,24, 133–135 (1975)

    Google Scholar 

  4. Döring, B.: Einige sätze über das Verfahren der tangierenden Hyperbeln in Banach-Räumen. Aplikace Mat.15, 418–464 (1970)

    Google Scholar 

  5. Ehrmann, H.: Konstruktion und Durchfürung von Iterationsverfahren höherer Ordnung. Arch. Rational Mech. Anal.,4, 65–88 (1959)

    Google Scholar 

  6. Gander, W.: On Halley's iteration method. Amer. Math. Monthly,92, 131–134 (1985)

    Google Scholar 

  7. Kantorovich, L. V. and Akilov, G. P.: Functional Analysis in normed spaces. Ed. Oxford: Pergamon 1964

    Google Scholar 

  8. Miel, G. J.: The Kantorovich Theorem with optimal error bounds. Amer. Math. Monthly,86, 212–215 (1979)

    Google Scholar 

  9. Miel, G. J.: An updated version of the Kantorovich theorem for Newton's method. Computing,27, 237–244 (1981)

    Google Scholar 

  10. Ortega, J. M.: The Newton-Kantorovich theorem. Amer. Math. Monthly,75, 658–660 (1968)

    Google Scholar 

  11. Ortega, J. M. and Rheinboldt, W. C.: Iterative solution of nonlinear equations in several variables. Ed. New York: Academic Press 1970

    Google Scholar 

  12. Potra, F. A. and Pták, V.: Sharp error bounds for Newton's process. Numer. Math.,34, 63–72 (1980)

    Google Scholar 

  13. Potra, F. A. and Pták, V.: Nondiscrete induction and iterative processes. Research Notes in Mathematics,103, Ed. Boston: Pitman 1984

    Google Scholar 

  14. Tapia, R. A.: The Kantorovich theorem for Newton's method. Amer. Math. Monthly,78, 389–392 (1971)

    MathSciNet  Google Scholar 

  15. Taylor, A. Y. and Lay, D.: Introduction to Functional Analysis. 2nd. Ed. New York: J. Wiley, 1980

    Google Scholar 

  16. Yamamoto, T.: A method for finding sharp error bounds for Newton's Method under the Kantorovich Assumptions. Numer. Math.49, 203–220 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is part of the PhD dissertation, realized under the direction of the second named author.

Supported in part by C.A.I.C.Y.T. GR85-0035. University of Valencia (Spain).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Candela, V., Marquina, A. Recurrence relations for rational cubic methods I: The Halley method. Computing 44, 169–184 (1990). https://doi.org/10.1007/BF02241866

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02241866

AMS Subject Classification (1980)

Key words

Navigation