Skip to main content
Log in

The modular torus has maximal length spectrum

  • Published:
Geometric & Functional Analysis GAFA Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. B.H. Bowditch, A proof of McShane's identity via Markoff triples, Bull. London Math. Soc. 28 (1996), 73–78.

    Google Scholar 

  2. B.H. Bowditch, Markoff triples and quasifuchsian groups, preprint 1995.

  3. P. Buser, Geometry and Spectra for compact Riemann surfaces, Birkhäuser, Boston-Basel-Berlin, 1992.

    Google Scholar 

  4. P. Buser, K.-D. Semmler, The geometry and spectrum of the one holed torus, Comment. Math. Helv. 63 (1988), 259–274.

    Google Scholar 

  5. J.M. Cohen, On Hurwitz extensions byPSL 2(7), Math. Proc. Camb. Phil. Soc. 86 (1979), 395–400.

    Google Scholar 

  6. P. Cohen, J. Wolfart, Modular embeddings for some non-arithmetic Fuchsian groups, Acta Arith. 56 (1990), 93–110.

    Google Scholar 

  7. H. Cohn, Approach to Markoff's minimal forms through modular functions, Ann. Math. 61 (1955), 1–12.

    Google Scholar 

  8. J. Gilman, Two-generator Discrete Subgroups ofPSL(2, Z), Memoirs of the AMS 561 (1995).

  9. A. Haas, Diophantine approximation on hyperbolic surfaces, Acta Math. 156 (1986), 33–82.

    Google Scholar 

  10. D.A. Hejhal, The Selberg Trace Formula forPSL(2, Z), I and II, Springer Lectures Notes in Math. 548 (1976) and 1001 (1983).

  11. S. Kühnlein, Partial solution of the conjecture of Schmutz, Archiv d. Math. 67 (1996), 164–172.

    Google Scholar 

  12. W. Luo, P. Sarnak, Number variance for arithmetic hyperbolic surfaces, Commun. Math. Phys. 161 (1994), 419–432.

    Google Scholar 

  13. J.P. Matelski, The classification of discrete 2-generator subgroups ofPSL(2, R), Israel J. Math. 42 (1982), 309–317.

    Google Scholar 

  14. G. McShane, Simple geodesics and a series constant over Teichmüller space, preprint (1995).

  15. G. McShane, I. Rivin, Simple curves on hyperbolic tori, C.R. Acad. Sci. Paris 320 (1995), 1523–1528.

    Google Scholar 

  16. G. McShane, I. Rivin, A norm on homology of surfaces and counting simple geodesics, Internat. Math. Res. Notices (1995), 61–69.

  17. A. Pollington, W. Moran, Number Theory with an Emphasis on the Markoff Spectrum, Marcel Dekker, New York-Basel-Hong Kong, 1993.

    Google Scholar 

  18. R.A. Rankin, The Modular Group and its Subgroups, The Ramanujan Institut, Madras, 1969.

    Google Scholar 

  19. R.A. Rankin, Modular Forms and Functions, Cambridge University Press, Cambridge-London-New York-Melbourne, 1977.

    Google Scholar 

  20. P. Schmutz, Die Parametrisierung des Teichmüllerraumes durch geodätische Längenfunktionen, Comment. Math. Helv. 68 (1993), 278–288.

    Google Scholar 

  21. P. Schmutz, Riemann surfaces with shortest geodesic of maximal length, Geometric And Functional Analysis 3 (1993), 564–631.

    Google Scholar 

  22. P. Schmutz, Arithmetic groups and the length spectum of Riemann surfaces, Duke Math. J. 84 (1996), 199–215.

    Google Scholar 

  23. P. Schmutz, Systoles of arithmetic surfaces and the Markoff spectrum, Math. Ann. 305 (1996), 191–203.

    Google Scholar 

  24. L. Schneps (ed.), The Grothendieck Theory of dessins d'enfants, London Math. Soc. Lecture Note Series 200, Cambridge University Press, 1994.

  25. K. Takeuchi, A characterization of arithmetic Fuchsian groups, J. Math. Soc. Japan 27 (1975), 600–612.

    Google Scholar 

  26. K. Takeuchi, Arithmetic triangle groups, J. Math. Soc. Japan 29 (1977), 91–106.

    Google Scholar 

  27. K. Wohlfahrt, An extension of F. Klein's level concept, Illinois J. Math. 8 (1964), 529–535.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Schweiz. Nationalfonds zur Förderung wissenschaftlicher Forschung

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaller, P.S. The modular torus has maximal length spectrum. Geometric and Functional Analysis 6, 1057–1073 (1996). https://doi.org/10.1007/BF02246996

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02246996

Keywords

Navigation