Skip to main content
Log in

On the classification of toric Fano 4-folds

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The biregular classification of smoothd-dimensional toric Fano varieties is equivalent to the classification of special simplicial polyhedraP in ℝd, the so-called Fano polyhedra, up to an isomorphism of the standard lattice\(\mathbb{Z}^d \subset \mathbb{R}^d\). In this paper, we explain the complete biregular classification of all 4-dimensional smooth toric Fano varieties. The main result states that there exist exactly 123 different types of toric Fano 4-folds somorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. V. Batyrev, “Toroidal Fano 3-folds,”Math. USSR Izv.,19, 13–25 (1982).

    Article  MATH  Google Scholar 

  2. V. V. Batyrev, “Boundness of the degree of higher-dimensional toric Fano varieties,”Vestn. Mosk. Univ., Ser. Mat.,37, 28–33 (1982).

    MATH  Google Scholar 

  3. V. V. Batyrev,Higher-dimensional toric varieties with ample anticanonical class, Ph.D. Thesis [in Russian], Moscow State University (1984).

  4. V. V. Batyrev and D. A. Mel’nikov “A theorem on nonextensibility of toric varieties,”Vestn. Mosk. Univ., Ser. Mat.,41, No. 3, 23–27 (1986).

    MathSciNet  Google Scholar 

  5. V. V. Batyrev, “On the classification of smooth projective toric varieties,”Tohoku Math. J., II, Ser. 43, No. 4, 569–585 (1991).

    MATH  MathSciNet  Google Scholar 

  6. V. V. Batyrev, “Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties,”J. Alg. Geom.,3, No. 3, 493–535 (1994).

    MATH  MathSciNet  Google Scholar 

  7. V. V. Batyrev and D. A. Cox, “On the Hodge structure of projective hypersurfaces in toric varieties,”Duke Math. J.,75, No. 2, 293–338 (1994).

    MathSciNet  Google Scholar 

  8. A. Borel,Linear Algebraic Groups, Graduate Texts in Mathematics, Vol. 126, New York, Springer-Verlag (1991).

    Google Scholar 

  9. A. A. Borisov and L. A. Borisov, “Singular toric Fano varieties,”Mat. Sb.,75, No. 1, 277–283 (1993).

    MathSciNet  Google Scholar 

  10. D. A. Cox, “The homogeneous coordinate ring of a toric variety,”J. Alg. Geom.,4, No. 1, 17–50 (1995).

    MATH  Google Scholar 

  11. S. D. Cutkosky, “On Fano 3-folds,”Manuscr. Math.,64, No. 2, 189–204 (1989).

    MATH  MathSciNet  Google Scholar 

  12. V. I. Danilov, “The geometry of toric varieties,”Usp. Mat. Nauk (2),33, 85–134 (1978).

    MATH  MathSciNet  Google Scholar 

  13. S. Evertz,Zur Klassifikation 4-dimensionaler Fano-Varietäten, Diplomarbeit [in German], Math. Inst. der Ruhr-Universität Bochum (1988).

  14. G. Ewald, “On the classification of toric Fano varieties,”Discrete Comput. Geom.,3, 49–54 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  15. W. Fulton,Introduction to Toric Varieties, Ann. Math. Stud., Vol. 131, Princeton University Press (1993).

  16. B. Grünbaum and V. P. Streedharan, “An enumeration of simplicial 4-polytopes with 8 vertices,”J. Combinatorial Theory,2, 435–465 (1967).

    Google Scholar 

  17. V. A. Iskovskih, “Fano 3-folds, I,”Izv. Akad. Nauk SSSR, Ser. Mat.,12, 485–527 (1977).

    MathSciNet  Google Scholar 

  18. V. A. Iskovskih, “Fano 3-folds, II,”Izv. Akad. Nauk SSSR, Ser. Mat.,12, 469–506 (1978).

    MATH  MathSciNet  Google Scholar 

  19. P. Kleinschmidt, “A classification of toric varieties with few generators,”Aequationes Math.,35, No. 2/3, 254–266 (1988).

    MATH  MathSciNet  Google Scholar 

  20. J. Kollár, Y. Miyaoka, and S. Mori, “Rational connectedness and boundedness of Fano manifolds,”J. Differ. Geom.,36, No. 3, 765–779 (1992).

    Google Scholar 

  21. J. Kollár, Y. Miyaoka, and S. Mori, “Rational curves on Fano varieties,” In:Classification of Irregular Varieties, Minimal Models, and Abelian Varieties, Lect. Notes Math., Vol. 1515 (1992), pp. 100–105.

  22. T. Mabuchi, “Einstein-Kähler forms, Futaki invariants, and convex geometry on toric Fano varieties,”Osaka J. Math.,24, 705–737 (1987).

    MATH  MathSciNet  Google Scholar 

  23. Yu. I. Manin,Cubic Forms. Algebra, Geometry, Arithmetic, Amsterdam-New York-Oxford, North-Holland (1986).

    Google Scholar 

  24. S. Mori, “Threefolds whose canonical bundles are not numerically effective,”Ann. Math., II, Ser. 116, 133–176 (1982).

    Google Scholar 

  25. S. Mori, “Cone of curves, and Fano 3-folds,” In:Proc. Int. Congr. Math., Warszawa, 1983, Vol. 1 (1984), pp. 747–752.

  26. S. Mori and S. Mukai, “Classification of Fano 3-folds withB 2>2,”Manusr. Math.,36, 147–162 (1981).

    MathSciNet  Google Scholar 

  27. S. Mori and S. Mukai, “On Fano 3-folds withB 2>2,” In:Algebraic Varieties and Analytic Varieties, Proc. Symp., Tokyo, 1981, Adv. Stud. Pure Math., Vol. 1 (1983), pp. 101–129.

  28. S. Mori and S. Mukai, “Classification of Fano 3-folds withB 2>-2, I,” In:Algebraic and Topological Theories, Tokyo (1986), pp. 496–545.

  29. J. P. Murre, “Classification of Fano threefolds according to Fano and Iskovskih,” In:Algebraic Threefolds, Lect. Notes Math., Vol. 947 (1982), pp. 35–92.

  30. A. M. Nadel, “The boundedness of degree of Fano varieties with Picard number one,”J. Amer. Math. Soc.,4, No. 4, 681–692 (1991).

    MATH  MathSciNet  Google Scholar 

  31. Y. NakagawaA letter to V. Batyrev, November 13, 1991.

  32. Y. Nakagawa, “Einstein-Kähler toric Fano fourfolds,”Tohoku Math. J., II, Ser. 45, No. 2, 297–310 (1993).

    MATH  MathSciNet  Google Scholar 

  33. Y. Nakagawa, “Classification of Einstein-Kähler toric Fano fourfolds,”Tohoku Math. J., II, Ser. 46, No. 1, 125–133 (1994).

    MATH  MathSciNet  Google Scholar 

  34. T. Oda,Convex Bodies and Algebraic Geometry. An Introduction to the Theory of Toric Varieties, Ergebnisse der Mathematik und Ihrer Grenzgebiete, Folge 3, Bd. 15, Berlin, Springer-Verlag (1988).

    Google Scholar 

  35. M. Reid, “Decomposition of toric morphisms,” In:Arithmetic and Geometry, Vol. II:Geometry, Progr. Math.,36, 395–418 (1983).

  36. V. E. Voskresenski and A. A. Klyachko, “Toroidal Fano varieties and root systems,”Izv. Akad. Nauk SSSR, Ser. Mat.,24, 221–244 (1985).

    Google Scholar 

  37. K. Watanabe and M. Watanabe, “The classification of Fano 3-folds with torus embeddings,”Tokyo J. Math.,5, 37–48 (1982).

    MathSciNet  Google Scholar 

Download references

Authors

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory Vol. 56. Algebraic Geometry-9, 1998.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batyrev, V.V. On the classification of toric Fano 4-folds. J Math Sci 94, 1021–1050 (1999). https://doi.org/10.1007/BF02367245

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02367245

Keywords

Navigation