Skip to main content
Log in

Refinement equations with nonnegative coefficients

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper we analyze solutions of the n-scale functional equation Ф(x) = Σk∈ℤ Pk Ф(nx−k), where n≥2 is an integer, the coefficients {Pk} are nonnegative and Σpk = 1. We construct a sharp criterion for the existence of absolutely continuous solutions of bounded variation. This criterion implies several results concerning the problem of integrable solutions of n-scale refinement equations and the problem of absolutely continuity of distribution function of one random series. Further we obtain a complete classification of refinement equations with positive coefficients (in the case of finitely many terms) with respect to the existence of continuous or integrable compactly supported solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berger, M.A. and Wang, Y. (1992). Bounded semi-groups of matrices.Linear Alg. Appl.,166, 21–27.

    Article  MATH  MathSciNet  Google Scholar 

  2. Cavaretta, A., Dahmen, W., and Micchelli, C. (1991). Stationary subdivision,Mem. Am. Math. Soc.,93, 1–186.

    MathSciNet  Google Scholar 

  3. Cohen, A. and Daubechies, I. (1992). A sStability criterion for the orthogonal wavelet bases and their related subband coding scheme,Duke Math. J.,68(2), 313–335.

    Article  MATH  MathSciNet  Google Scholar 

  4. Collela, D. and Heil, C. (1994). Characterization of scaling functions, I. Continuous solutions,SIAM. J. Matrix Anal. Appl.,15, 496–518.

    Article  MathSciNet  Google Scholar 

  5. Gelfand, I.M. and Shilov, G.E. (1964).Generalized Functions, Academic Press, New York.

    Google Scholar 

  6. Daubechies, I. (1988). Orthonormal bases of wavelets with compact support,Comm. Pure Appl. Math.,41, 909–996.

    MATH  MathSciNet  Google Scholar 

  7. Daubechies, I. and Lagarias, J. (1991). Two-scale difference equations, I. Global regularity of solutions,SIAM. J. Math. Anal.,22, 1388–1410.

    Article  MATH  MathSciNet  Google Scholar 

  8. Daubechies, I. and Lagarias, J. (1992). Two-scale difference equations, II. Local regularity, infinite products of matrices and fractals,SIAM. J. Math. Anal.,23, 1031–1079.

    Article  MATH  MathSciNet  Google Scholar 

  9. Derfel, G.A. (1989). Probabilistic method for a class of functional-differential equations,Ukrain. Math. J.,41(19).

  10. Derfel, G.A., Dyn, N., and Levin, D. (1995). Generalized refinement equations and subdivision processes,J. Approx. Theory,80, 272–297.

    Article  MATH  MathSciNet  Google Scholar 

  11. Deslauriers, G. and Dubuc, S. (1989). Symmetric iterative interpolation processes,Constr. Approx.,5, 49–68.

    Article  MATH  MathSciNet  Google Scholar 

  12. Dyn, N., Gregory, J.A., and Levin, D. (1987). A four-point interpolatory subdivision scheme for curve design,Comput. Aided Geom. Design,4, 257–268.

    Article  MATH  MathSciNet  Google Scholar 

  13. Dyn, N., Gregory, J.A., and Levin, D. (1991). Analysis of linear binary subdivision schemes for curve design,Constr. Approx.,7, 127–147.

    Article  MATH  MathSciNet  Google Scholar 

  14. Deliu, A. and Spruill, M.C. (1994). Dilation equations and absolute continuity of random expansions, School of Mathematics Technical Rept. No 103194-025, Georgia Tech.

  15. Derfel, G. and Schilling, R. (1996). Spatially chaotic configurations and functional equations with rescaling,J. Phys. A.,29, 4537–4547.

    Article  MATH  MathSciNet  Google Scholar 

  16. Erdös, P. (1939). On a family of symmetric Bernuolli convolutions,Am. J. Math.,61, 974–975.

    Article  MATH  Google Scholar 

  17. Erdös, P. (1940). On the smoothness properties of Bernuolli convolutions,Am. J. Math.,62, 180–186.

    Article  MATH  Google Scholar 

  18. Garsia, A.M. (1962). Arithmetic properties of Bernuolli convolutions,Trans. Am. Math. Soc.,102, 409–432.

    Article  MATH  MathSciNet  Google Scholar 

  19. Heil, C. and Collela, D. (1993). Dilation equations and the smoothness of compactly supported wavelets, inWavelets: Mathematics and Applications. Benedetto, J.J. and Frazier, M., Eds., CRC Press, Boca Raton, FL, 161–200.

    Google Scholar 

  20. Lagarias, J.C. and Wang, Y. (1995). The finiteness conjecture for the generalized spectral radius of a set of matrices,Linear Alg. Appl.,214, 17–42.

    Article  MATH  MathSciNet  Google Scholar 

  21. Lau, K.S., Ma, M.-F., and Wang, J. (1996). On some sharp regularity estimations ofL 2-scaling functions,SIAM. J. Math. Anal.,27, 835–864.

    Article  MATH  MathSciNet  Google Scholar 

  22. Lau, K.S. and Wang, J. (1995). Characterization ofL p -solutions for two-scale dilation equations,SIAM. J. Math. Anal.,26, 1018–1046.

    Article  MATH  MathSciNet  Google Scholar 

  23. Micchelli, C.A. (1986). Subdivision algorithms for curves and surfaces,Proc. SIGGRAPH, Dallas, TX.

  24. Micchelli, C.A. and Prautzsch, H. (1987). Refinement and subdivision for spaces of integer translates of a compactly supported function, inNumerical Analysis, Griffiths, D.F. and Watson, G.A., Eds., 192–222.

  25. Micchelli, C.A. and Prautzsch, H. (1989). Uniform refinement of curves,Linear Alg. Appl.,114/115, 841–870.

    Article  MathSciNet  Google Scholar 

  26. Peres, Y. and Solomyak, B. (1996). Absolute continuity of Bernuolli convolution, a simple proof,Math. Res. Lett.,3(2), 231–239.

    MATH  MathSciNet  Google Scholar 

  27. Protasov, V. (1996). The joint spectral radius and invariant sets of the several linear operators,Fundamentalnaya i Prikladnaya Matematika,2(1), 205–231.

    MATH  MathSciNet  Google Scholar 

  28. Protasov, V. (1997). The generalized joint spectral radius. The geometric approach,Izvestiya Akademii Nauk. Seriya Matematicheskaya,61(5), 99–136.

    MATH  MathSciNet  Google Scholar 

  29. Protasov, V. A complete solution characterizing smooth refinable functions,SIAM J. Math. Anal., to appear.

  30. Rota, G.C. and Strang, G. (1960). A note on the joint spectral radius,Kon. Nederl. Acad. Wet. Proc.,63, 379–381.

    MATH  MathSciNet  Google Scholar 

  31. Salem, R. (1963).Algebraic Numbers and Fourier Analysis. D.C. Heath and Co., Boston, MA.

    MATH  Google Scholar 

  32. Schumaker, L.L. (1981).Spline Functions: Basic Theory, John Wiley & Sons, New York.

    Google Scholar 

  33. Solomyak, B. (1995). On the random series Σ±λi (an Erdös problem),Ann. Math.,142, 611–625.

    Article  MATH  MathSciNet  Google Scholar 

  34. Wang, Y. (1995). Two-scale dilation equations and the cascade algorithm,Random Comput. Dynamic,3(4), 289–307.

    Google Scholar 

  35. Wang, Y. (1996). Two-scale dilation equations and the mean spectral radius,Random Comput. Dynamic,4(1), 49–72.

    MATH  Google Scholar 

  36. Zakusilo, O.K. (1975). On classes of limit distributions in some scheme of summing up,Teoria Veroyatnosti i Mat. Statistika,12, 44–48.

    MATH  MathSciNet  Google Scholar 

  37. Zakusilo, O.K. (1976). Some properties of classesL p of limit distribution,Teoria Veroyatnosti i Mat. Statistika,15, 68–73.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Albert Cohen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Protasov, V. Refinement equations with nonnegative coefficients. The Journal of Fourier Analysis and Applications 6, 55–78 (2000). https://doi.org/10.1007/BF02510118

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02510118

Math Subjec Classifications

Keywords and Phrases

Navigation