Skip to main content
Log in

Beurling-Landau-type theorems for non-uniform sampling in shift invariant spline spaces

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Under the appropriate definition of sampling density Dϕ, a function f that belongs to a shift invariant space can be reconstructed in a stable way from its non-uniform samples only if Dϕ≥1. This result is similar to Landau's result for the Paley-Wiener space B 1/2 . If the shift invariant space consists of polynomial splines, then we show that Dϕ<1 is sufficient for the stable reconstruction of a function f from its samples, a result similar to Beurling's special case B 1/2 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldroubi, A. (1995). Portraits of frames,Proc. Am. Math. Soc.,123(6), 1661–1668.

    Article  MATH  MathSciNet  Google Scholar 

  2. Aldroubi, A. and Feichtinger, H. (1998). Exact iterative reconstruction algorithm for multivariate irregularly sampled functions in spline-like spaces: theL p theory,Proc. Am. Math. Soc.,126(9), 2677–2686.

    Article  MATH  MathSciNet  Google Scholar 

  3. Aldroubi, A. and Unser, M. (1992). Families of wavelet transforms in connection with Shannon's sampling theory and the Gabor transform, inWavelets: A Tutorial in Theory and Applications, C.K. Chui, Ed., Academic Press, 1992, 509–528.

  4. Aldroubi, A. and Unser, M. (1994). Sampling procedure in function spaces and asymptotic equivalence with Shannon's sampling theory,Numer. Funct. Anal. and Optimiz. 15(1), 1–21.

    MATH  MathSciNet  Google Scholar 

  5. Berenstein, C.A. and Patrick, E.V. (1990). Exact deconvolution for multiple convolution operators—an overview, plus performance characterizations for imaging sensors, inIEEE, 723–743. IEEE.

  6. Beurling, A. (1989). In Carleson, L., Ed.,A. Beurling. Collected Works. Vol. 2, Birkhäuser, Boston, 341–365.

    Google Scholar 

  7. Butzer, P.L. (1983). A survey of the Whittaker-Shannon sampling theorem and some of its extension,J. Math. Res. Exposition,3(1), 185–212.

    MathSciNet  Google Scholar 

  8. Chen, W., Itoh, S., and Shiki, J. (1998). Irregular sampling theorems for wavelet subspaces,IEEE Trans. Inform. Theory,44, 1131–1142.

    Article  MATH  MathSciNet  Google Scholar 

  9. Chui, C.K., Ed. (1992).Wavelets: A Tutorial in Theory and Applications. Academic Press, San Diego, CA.

    MATH  Google Scholar 

  10. Duffin, R.J. and Schaeffer, A.C. (1952). A class of nonharmonic Fourier series,Trans. Am. Math. Soc.,72(2), 341–366.

    Article  MATH  MathSciNet  Google Scholar 

  11. Feichtinger, H.G. (1990). Generalized amalgams, with applications to Fourier transform,Can. J. Math.,42 (3), 395–409.

    MATH  MathSciNet  Google Scholar 

  12. Feichtinger, H.G. (1991). Wiener amalgams over euclidean spaces and some of their applications, in Jarosz, K., Ed.,Proc. Conf. Function spaces,136, ofLect. Notes in Math., Edwardsville, IL, April 1990, 123–137, Marcel-Dekker.

  13. Feichtinger, H.G. and Gröchenig, H. (1992). Iterative reconstruction of multivariate band-limited functions from irregular sampling values,SIAM J. Math. Anal.,231, 244–261.

    Article  Google Scholar 

  14. Feichtinger, H.G. and Gröchenig, K. (1993). Theory and practice of irregular sampling, in wavelets: Mathematics and applications, in Benedetto, J.J. and Frazier, M., Eds.,Wavelets: Mathematics and Applications, CRC, Boca Raton, FL. 305–363.

    Google Scholar 

  15. Fournier, J.J. and Stewart, J. (1985). Amalgams ofl p andl p.Bull. Am. Math. Soc.,13(1), 1–21.

    MATH  MathSciNet  Google Scholar 

  16. Gröchenig, K. (1992). Reconstruction algorithms in irregular sampling,Math. Comp.,59, 181–194.

    Article  MATH  MathSciNet  Google Scholar 

  17. Gröchenig, K. and Razafinjatovo, H. (1996). On Landau's necessary density conditions for sampling and interpolation of band-limited function,J. London Math. Soc.,54, 557–565.

    MATH  MathSciNet  Google Scholar 

  18. Janssen, A. (1993). The Zak transform and sampling theorems for wavelet subspaces,IEEE Trans. Signal Process.,6, 39–49.

    MATH  MathSciNet  Google Scholar 

  19. Jerri, A. (1977). The Shannon sampling theorem—its various extensions and applications: A tutorial review,Proc. IEEE,65, 1565–1596.

    Article  MATH  Google Scholar 

  20. Jia, R.Q. and Micchelli, C.A. (1991). Using the refinement equations for the construction of pre-wavelets. ii. powers of two, inCurves and Surfaces, Academic Press, Boston, MA, 209–246.

    Google Scholar 

  21. Landau, H. (1967). Necessary density conditions for sampling and interpolation of certain entire functions,Acta Math.,117, 37–52.

    Article  MATH  MathSciNet  Google Scholar 

  22. Liu, Y. (1996). Irregular sampling for spline wavelet subspaces,IEEE Trans. Inform. Theory,42, 623–627.

    Article  MATH  MathSciNet  Google Scholar 

  23. Liu, Y.M. and Walter, G.G. (1995). Irregular sampling in wavelet subspaces,J. Fourier Anal. Appl.,2(2), 181–189.

    Article  MATH  MathSciNet  Google Scholar 

  24. Mallat, S. (1989). Multiresolution approximations and wavelet orthonormal bases of L2ℝ,Trans. Am. Math. Soc.,315(1), 69–97.

    Article  MATH  MathSciNet  Google Scholar 

  25. Mallat, S. (1992). Personal communication, conf. oberwolfach, wavelets and applications.

  26. Meyer, Y. (1990).Ondelettes et opérateurs, Hermann, Paris, France.

    MATH  Google Scholar 

  27. Schumaker, L. (1980).Spline Functions: Basic Theory. Wiley-Interscience, Boston.

    Google Scholar 

  28. Unser, M. and Aldroubi, A. (1994). A general sampling theory for non-ideal acquisition devices,IEEE Trans. on Signal Processing,42(11), 2915–2925.

    Article  Google Scholar 

  29. Walnut, D. (1996). Nonperiodic sampling of bandlimited functions on union of rectangular lattices,J. Fourier Anal. Appl.,2(5), 436–451.

    MathSciNet  Google Scholar 

  30. Walter, G.G. (1992). A sampling theorem for wavelet subspaces,IEEE Trans. Inform. Theory, part 2,116(2) 881–884.

    Article  Google Scholar 

  31. Xia, X.G. and Zhang, Z.Z. (1993). On sampling theorem, wavelets, and wavelet transforms,IEEE Trans. Signal Process.,41(12), 3524–3535.

    Article  MATH  Google Scholar 

  32. Yao, K. (1967). Applications of reproducing kernel Hilbert spaces-bandlimited signal models,Information and Control,11, 429–444.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by John J. Benedetto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aldroubi, A., Gröchenig, K. Beurling-Landau-type theorems for non-uniform sampling in shift invariant spline spaces. The Journal of Fourier Analysis and Applications 6, 93–103 (2000). https://doi.org/10.1007/BF02510120

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02510120

Math Subject Classifications

Keywords and Phrases

Navigation