Skip to main content
Log in

Orthogonality criteria for compactly supported refinable functions and refinable function vectors

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

A refinable function φ(x):ℝn→ℝ or, more generally, a refinable function vector Φ(x)=[φ1(x),...,φr(x)]T is an L1 solution of a system of (vector-valued) refinement equations involving expansion by a dilation matrix A, which is an expanding integer matrix. A refinable function vector is called orthogonal if {φj(x−α):α∈ℤn, 1≤j≤r form an orthogonal set of functions in L2(ℝn). Compactly supported orthogonal refinable functions and function vectors can be used to construct orthonormal wavelet and multiwavelet bases of L2(ℝn). In this paper we give a comprehensive set of necessary and sufficient conditions for the orthogonality of compactly supported refinable functions and refinable function vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cassels, J.W.S. (1957).An Introduction to Diophatine Approximations, Cambridge University Press.

  2. Cerveau, D., Conze, J.P., and Raugi, A. (1996). Fonctions harmoniques pour un opérateur de transition en dimension>1.Bol. Soc. Bras. Mat.,27, 1–26.

    Article  MathSciNet  Google Scholar 

  3. Cohen, A. (1990). Ondelettes, analyses multirésolutions et filtres mirriors em quadrature.Ann. Inst. Poincaré,7, 439–459.

    MATH  Google Scholar 

  4. Cohen, A., Daubechies, I., and Feauveau, J.C. (1992). Biorthogonal bases of compactly supported wavelets,Comm. Pure Appl. Math.,XLV, 485–560.

    MathSciNet  Google Scholar 

  5. Cohen, A., Daubechies, I., and Plonka, G. (1997). Regularity of refinable function vectors.J. Fourier Anal. Appl.,3, 295–324.

    MATH  MathSciNet  Google Scholar 

  6. Cohen, A. and Sun, Q. (1993). An arithmetic characterisation of conjugate quadrature filters associated to orthonormal wavelet bases.SIAM J. Math. Anal.,24, 1355–1360.

    Article  MATH  MathSciNet  Google Scholar 

  7. Conze, J.P., Hervé, L., and Raugi, A. (1997). Pavages auto-affines, opérateur de transfert et critères de réseau dans ℝd,Bol. Soc. Bras. Mat.,28, 1–42.

    Article  MATH  Google Scholar 

  8. Conze, J.P. and Raugi, A. (1990). Fonctions harmoniques pour un operateur de transition et applications,Bull. Soc. Math. France,118 273–310.

    MATH  MathSciNet  Google Scholar 

  9. Daubechies, I. (1988). Orthonormal bases of compactly supported wavelets,Comm. Pure Appl. Math.,41, 909–996.

    MATH  MathSciNet  Google Scholar 

  10. Daubechies, I. (1992).Ten Lectures on Wavelets, SIAM, Philadelphia, PA.

    MATH  Google Scholar 

  11. Daubechies, I. and Lagarias, J.C. (1991). Two-scale difference equations I: existence and global regularity of solutions,SIAM J. Appl. Math.,22, 1388–1410.

    Article  MATH  MathSciNet  Google Scholar 

  12. Donovan, G., Geronimo, J., Hardin, D., and Massopust, P. (1996). Construction of orthogonal wavelets using fractal interpolation functions,SIAM J. Math. Anal.,27, 1158–1192.

    Article  MATH  MathSciNet  Google Scholar 

  13. Flaherty, T. and Wang, Y. (1999). Haar-type multiwavelet bases and self-affine multi-tiles,Asian J. Math.,3(2), 387–400.

    MATH  MathSciNet  Google Scholar 

  14. Goodman, T.N.T. and Lee, S.L. (1994). Wavelets of multiplicity r,Trans. Am. Math. Soc.,342, 307–324.

    Article  MATH  MathSciNet  Google Scholar 

  15. Goodman, T.N.T., Lee, S.L., and Tang, W.S. (1993). Wavelets in wandering subspaces,Trans. Am. Math. Soc.,338, 639–654.

    Article  MATH  MathSciNet  Google Scholar 

  16. Gröchenig, K. (1994). Orthogonality criteria for compactly supported scaling functions,Appl. Comp. Harmonic Anal.,1, 242–245.

    Article  MATH  Google Scholar 

  17. Gröchenig, K. and Hass, A. (1994). Self-similar lattice tillings,J. Fourier Anal. Appl.,1, 131–170.

    Article  MATH  MathSciNet  Google Scholar 

  18. Hervé, L. (1994). Multi-resolution analysis of multiplicityd: applications to dyadic interpolation,Appl. Comput. Harmon. Anal.,1(4), 299–315.

    Article  MATH  MathSciNet  Google Scholar 

  19. Heil, C. and Collela, D. (1996). Matrix refinement equations: existence and uniqueness,J. Fourier Anal. Appl.,2, 363–377.

    MATH  MathSciNet  Google Scholar 

  20. Hogan, T. (1998). A note on matrix refinement equations,SIAM J. Math. Anal.,29(4), 849–854.

    Article  MATH  MathSciNet  Google Scholar 

  21. Jia, R.-Q. and Shen, Z. (1994). Multiresolution and waveles,Proc. Edinburgh Math. Soc.,37, 271–300.

    Article  MATH  MathSciNet  Google Scholar 

  22. Lagarias, J.C. and Wang, Y. (1995). Haar type orthonormal wavelet basis in ℝ2,J. Fourier Anal. Appl.,2, 1–14.

    Article  MATH  MathSciNet  Google Scholar 

  23. Lagarias, J.C. and Wang, Y. (1996). Self-affine tiles in ℝn.Adv. Math.,121, 21–49.

    Article  MATH  MathSciNet  Google Scholar 

  24. Lagarias, J.C. and Wang, Y. (1997). Integral self-affine tiles in ℝn, part, II: lattice tilings.J. Fourier Anal. Appl.,3, 83–102.

    Article  MATH  MathSciNet  Google Scholar 

  25. Lawton, W. (1991). Necessary and sufficient conditions for constructing orthonormal wavelet bases,J. Math. Phys.,32, 57–61.

    Article  MATH  MathSciNet  Google Scholar 

  26. Lawton, W., Lee, S.L., and Shen, Z. (1997). Stability and orthonormality of multivariate refinable functions,SIAM J. Math. Anal.,28, 999–1014.

    Article  MATH  MathSciNet  Google Scholar 

  27. Lian, J. (1998). Orthogonality, criteria for multi-scaling functions,Appl. Comput. Harmon. Anal.,5(3), 277–311.

    Article  MATH  MathSciNet  Google Scholar 

  28. Mallat, S. (1989). Multiresolution analysis and wavelets,Trans. Am. Math. Soc.,315, 69–88.

    Article  MATH  MathSciNet  Google Scholar 

  29. Malone, D.L 2(ℝ) solutions of dilation equations and fourier-like transformations, preprint.

  30. Newman, M. (1972).Integral Matrices, Academic Press, New York.

    MATH  Google Scholar 

  31. Plonka, G. (1997). Necessary and sufficient conditions for orthonormality of scaling vectors, inMultivariate Approx. and Splines, Nürnberger, G., Schmidt, J.W., and Walz, G., Eds., ISNM, Vol. 125, Birkhäuser, Basel.

    Google Scholar 

  32. Shen, Z. (1998). Refinable function vectors,SIAM J. Math. Anal.,29, 235–250.

    Article  MATH  MathSciNet  Google Scholar 

  33. Strang, G., Strela, V., and Zhou, D. (1999). Compactly supported refinable functions with infinite masks, in Contemporary Mathematics, L. Baggett and D. Larson, Eds., AMS.

  34. Strichartz, R. and Wang, Y. Geometry of self-affine tiles I,Indiana J. Math.,48, No. 1, 1–23.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lagarias, J.C., Wang, Y. Orthogonality criteria for compactly supported refinable functions and refinable function vectors. The Journal of Fourier Analysis and Applications 6, 153–170 (2000). https://doi.org/10.1007/BF02510658

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02510658

Math Subject Classifications

Keywords and Phrases

Navigation