Skip to main content
Log in

Stable oscillations in mathematical models of biological control systems

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Summary

Oscillations in a class of piecewise linear (PL) equations which have been proposed to model biological control systems are considered. The flows in phase space determined by the PL equations can be classified by a directed graph, called a state transition diagram, on anN-cube. Each vertex of theN-cube corresponds to an orthant in phase space and each edge corresponds to an open boundary between neighboring orthants. If the state transition diagram contains a certain configuration called a cyclic attractor, then we prove that for the associated PL equation, all trajectories in the regions of phase space corresponding to the cyclic attractor either (i) approach a unique stable limit cycle attractor, or (ii) approach the origin, in the limitt→∞. An algebraic criterion is given to distinguish the two cases. Equations which can be used to model feedback inhibition are introduced to illustrate the techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bellman, R.: Introduction to Matrix Analysis. New York: McGraw-Hill, 1970

    MATH  Google Scholar 

  • Bourgeois, S., Monod, J.: Lac regulatory system. In: Control Processes in Multicellular Organisms (Wolstenholme, G., Knight, J., ed.), London: Churchill, 1970

    Google Scholar 

  • Friesen, W. O., Poon, M., Stent, G. S.: An oscillatory neuronal circuit generating locomotory rhythm. Proc. Natl. Acad. Sci. (U.S.)73, 3734–3738 (1976).

    Article  Google Scholar 

  • Gantmacher, F. R.: Applications of the Theory of Matrices, New York: Interscience, 1959

    MATH  Google Scholar 

  • Glass, L.: Combinatorial and topological methods in nonlinear chemical kinetics. J. Chem. Phys.63, 1325–1335 (1975a)

    Article  Google Scholar 

  • Glass, L.: Classification of biological networks by their qualitative dynamics. J. Theor. Biol.54, 85–107 (1975b)

    Article  Google Scholar 

  • Glass, L.: Global analysis of nonlinear chemical kinetics. In: Statistical Mechanics, Part B (Berne, B. J., ed.), New York: Plenum, 1977a

    Google Scholar 

  • Glass, L.: Combinatorial aspects of dynamics in biological systems. In: Statistical Mechanics and Statistical Methods in Theory and Application: A Tribute to Elliot W. Montroll (Landman, U., ed.) New York: Plenum, 1977b

    Google Scholar 

  • Glass, L., Kauffman, S. A.: The logical analysis of continuous nonlinear biochemical control networks. J. Theor. Biol.39, 103–129 (1973)

    Article  Google Scholar 

  • Glass, L., Pasternack, J. S.: Prediction of limit cycles in mathematical models of biological oscillations. Bull. Math. Biol. (in press) (1978)

  • Goodwin, B. C.: Oscillatory behavior in enzymatic control processes. In: Advances in Enzyme Regulation, 3 (Weber, G., ed.), Oxford: Pergamon, 1965

    Google Scholar 

  • Griffith, J. S.: Mathematics of cellular control processes. J. Theor. Biol.20, 202–216 (1968)

    Article  Google Scholar 

  • Hastings, S.: On the uniqueness and global asymptotic stability of periodic solutions for a third order system. Rocky Mountain Journal of Mathematics7, 513–538 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Hastings, S., Tyson, J., Webster, D.: Existence of periodic solutions for negative feedback control systems. J. Diff. Eqs.25, 39–64 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Hirsch, M. W., Smale, S.: Differential Equations, Dynamical Systems and Linear Algebra. New York: Academic Press, 1974

    MATH  Google Scholar 

  • Hsü, I-D.: The existence of nonlocal, periodic solutions for the Glass-Kauffman model of cellular dynamics. J. Diff. Eqs.25, 39–64 (1977)

    Article  Google Scholar 

  • Hunding, A.: Limit cycles in enzyme systems with nonlinear negative feedback. Biophys. Struct. Mech.1, 47–54 (1974)

    Article  Google Scholar 

  • Kauffman, S. A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol.22, 437–467 (1969)

    Article  MathSciNet  Google Scholar 

  • Kling, V., Szekeley, G.: Simulation of rhythmic nervous activities, I. Function of networks with cyclic inhibitions. Kybernetik5, 89–103 (1968)

    Article  Google Scholar 

  • Lee, J. W.: An extremal property of positive operators and its spectral implications. Applic. Anal.1, 359–379 (1972)

    MATH  Google Scholar 

  • Lehninger, A. L.: Biochemistry. New York: Worth Publishers, 1970

    Google Scholar 

  • Leslie, P. H.: On the use of matrices in certain population mathematics. Biometrika35, 182–212 (1945)

    Google Scholar 

  • Marsden, J. E.: Basic Complex Analysis. San Francisco: W. H. Freeman, 1973

    MATH  Google Scholar 

  • Marsden, J. E., McCracken, E.: The Hopf Bifurcation, New York, Springer-Verlag, 1977

    Google Scholar 

  • May, R. M.: Limit cycles in predator-prey communities. Science177, 900–902 (1972)

    Article  Google Scholar 

  • May, R. M.: Biological populations obeying difference equations: Stable points, stable cycles and chaos. J. Theor. Biol.51, 511–524 (1975)

    Article  Google Scholar 

  • May, R. M., Leonard, W. J.: Nonlinear aspects of competition between three species. SIAM J. Appl. Math.29, 243–253 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Monod, J., Jacob, F.: General conclusions: Teleonomic mechanisms in cellular metabolism, growth and differentiation. Cold Spring Harbour Symp. Quant. Biol.25, 389–401 (1961)

    Google Scholar 

  • Monod, J., Wyman, J., Changeux, J.-P.: On the nature of allosteric transitions. J. Mol. Biol.12, 88–118 (1965)

    Article  Google Scholar 

  • Othmer, H. G.: The qualitative dynamics of a class of biochemical control circuits. J. Math. Biol.3, 53–78 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  • Rössler, O.: In Lecture Notes in Biomathematics. Vol. 4, p. 546–582. New York: Springer-Verlag, 1974

    Google Scholar 

  • Simon, Z.: Multi-steady-state model for cell differentiation. J. Theor. Biol.8, 258–263 (1965)

    Article  Google Scholar 

  • Smale, S.: A mathematical model of two cells via Turing's equation. In: Lectures on Mathematics in the Life Sciences (Cowan, J., ed.), Providence: american Mathematical Society, 1974

    Google Scholar 

  • Sugita, M.: Functional analysis of chemical systemsin vivo using a logical circuit equivalent, II. The idea of a molecular automaton. J. Theor. Biol.4, 179–192 (1963)

    Article  Google Scholar 

  • Tyson, J. J.: On the existence of oscillatory solutions in negative feedback cellular control processes. J. Math. Biol.1, 311–315 (1975)

    MathSciNet  MATH  Google Scholar 

  • Usher, M. B.: Developments in the Leslie matrix model. In: Mathematical Models in Ecology (Jeffers, J. N. R., ed.), p. 29–60. Oxford: Blackwells, 1972

    Google Scholar 

  • Walter, C.: Oscillations in controlled biochemical systems. Biophys. J.9, 863–872 (1971)

    Google Scholar 

  • Yagil, G., Yagil, E.: On the relation between effector concentration and the rate of induced enzyme synthesis. Biophys. J.11, 11–27 (1971)

    Article  Google Scholar 

  • Yagil, G.: Quantitative aspects of protein induction. In: Curr. Top. Cell Reg. 9 (Horecker, B. L., Stadtman, E. R., eds.), New York: Academic Press, 1975

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glass, L., Pasternack, J.S. Stable oscillations in mathematical models of biological control systems. J. Math. Biology 6, 207–223 (1978). https://doi.org/10.1007/BF02547797

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02547797

Key words

Navigation