Skip to main content
Log in

Wonderful varieties of rank two

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

LetG be a complex connected reductive group. Well known wonderfulG-varieties are those of rank zero, namely the generalized flag varietiesG/P, those of rank one, classified in [A], and certain complete symmetric varieties described in [DP] such as the famous space of complete conics. Recently, there is a renewed interest in wonderful varieties of rank two since they were shown to hold a keystone position in the theory of spherical varieties, see [L], [BP], and [K].

The purpose of this paper is to give a classification of wonderful varieties of rank two. These are nonsingular completeG-varieties containing four orbits, a dense orbit and two orbits of codimension one whose closuresD 1 andD 2 intersect transversally in the fourth orbit which is of codimension two. We have gathered our results in tables, including isotropy groups, explicit basis of Picard groups, and several combinatorial data in relation with the theory of spherical varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Akhiezer,Equivariant completion of homogeneous algebraic varieties by homogeneous divisors, Ann. Glob. Analysis and Geometry1 (1983), 49–78.

    Article  MathSciNet  Google Scholar 

  2. A. Biaŀynicki-Birula,On induced actions of algebraic groups, Ann. Inst. Fourier Grenoble43, 2 (1993), 359–364.

    MathSciNet  Google Scholar 

  3. M. Brion, D. Luna et Th. Vust,Espaces homogènes sphériques, Invent. Math.84 (1986), 617–632.

    Article  MathSciNet  Google Scholar 

  4. N. Bourbaki,Groupes et Algèbres de Lie, Chap. IV, V, VI, 2e édition, Masson, Paris, 1981.

    MATH  Google Scholar 

  5. M. Brion, et F. Pauer,Valuations des espaces homogènes sphériques, Comment. Math. Helv.62 (1987), 265–285.

    MathSciNet  Google Scholar 

  6. M. Brion,Classification des espaces homogènes sphériques, Compositio Math.63 (1987), 189–208.

    MathSciNet  Google Scholar 

  7. M. Brion,On spherical varieties of rank one, CMS Conf. Proc.10 (1989), 31–41.

    MathSciNet  Google Scholar 

  8. M. Brion,Groupe de Picard et nombres caractéristiques des variétés sphériques, Duke Math.58, 2 (1989), 397–424.

    Article  MathSciNet  Google Scholar 

  9. M. Brion,Vers une généralisation des espaces symétriques, J. Algebra134 (1990), 115–143.

    Article  MathSciNet  Google Scholar 

  10. A. Borel, et J. Tits,Eléments unipotents et sous-groupes paraboliques de groupes réductifs I, Invent. Math.12 (1971), 95–104.

    Article  MathSciNet  Google Scholar 

  11. C. De Concini, and C. Procesi,Complete symmetric varieties, in Invariant theory, Proceedings, Montecatini (F. Gherardelli, ed.); Lect. Notes Math. 996, Springer-Verlag, 1983, 1–44.

  12. W. Fulton,Introduction to Toric Varieties, Annals of Math. Studies 131, Princeton University Press, 1993.

  13. F. Knop, H. Kraft, D. Luna, and Th. Vust,Local properties of algebraic group actions, in: Algebraische Transformationsgruppen und Invariantentheorie (H. Kraft, P. Slodowy, and T. Springer, ed.); DMV Semin. 13, Birkhäuser, Basel-Boston-Berlin, 1989, 63–76.

    Google Scholar 

  14. F. Knop,Automorphisms, root systems, and compactifications of Homogeneous Varieties, J. Amer. Math. Soc., Vol.9, 1 (1996), 153–174.

    Article  MathSciNet  Google Scholar 

  15. F. Knop,The Luna-Vust theory of spherical embeddings, in: Proc. of the Hyderabad Conf. on Algebraic Groups, Manoj Prakashan, Madras, 1991, 225–249.

  16. M. Krämer,Sphärische Untergrupen in kompakten zusammen hängenden Lie Gruppen, Compositio Math.38 (1979), 129–153.

    MathSciNet  Google Scholar 

  17. D. Luna,Toute variété magnifique est sphérique, Transformation Groups1, 3 (1996), 249–258.

    MathSciNet  Google Scholar 

  18. D. Luna,Grosses cellules pour les variétés sphériques, in: Algebraic Groups and Related Subjects. Volume in honor of R. W. Richardson (G. I. Lehrer, et al., ed.); Cambridge University Press, 1996.

  19. D. Luna, et Th. Vust,Plongements d’espaces homogènes, Comment. Math. Helv.58 (1983), 186–245.

    MathSciNet  Google Scholar 

  20. I. Mikityuk,On the integrability of invariant hamiltonian systems with homogeneous configuration spaces, Math. USSR, Sb.57 (1987), 527–546.

    Article  Google Scholar 

  21. G. Mostow,Fully reducible subgroups of algebraic groups, Amer. J. Math.78 (1956), 200–221.

    Article  MathSciNet  Google Scholar 

  22. A. L. Onishchik, and E. B. Vinberg,Seminar on Lie groups and Algebraic Groups, Berlin, Springer-Verlag, 1990.

    Google Scholar 

  23. F. Pauer,Caractérisation valuative d’une classe de sous-groupes d’un groupe algébrique, C.R. 109e Cong. Nat. Soc. Sav. Dijon Sci.3 (1984), 159–166.

    Google Scholar 

  24. H. Sumihiro,Equivariant completion, J. Math. Kyoto Univ.14 (1974), 1–28.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wasserman, B. Wonderful varieties of rank two. Transformation Groups 1, 375–403 (1996). https://doi.org/10.1007/BF02549213

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02549213

Keywords

Navigation