Skip to main content
Log in

Spectrum of the periodic Dirac operator

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The absolute continuity of the spectrum for the periodic Dirac operator

$$\hat D = \sum\limits_{j - 1}^n {\left( { - i\frac{\partial }{{\partial x_j }} - A_j } \right)} \hat \alpha _j + \hat V^{\left( 0 \right)} + \hat V^{\left( 1 \right)} ,x \in R^n ,n \geqslant 3,$$

, is proved given that A∈C(R n;R n)⊂H loc q(R n;R n), 2q>n−2, and also that the Fourier series of the vector potential A:R nR n is absolutely convergent. Here,\(\hat V^{\left( s \right)} = \left( {\hat V^{\left( s \right)} } \right)^* \) are continuous matrix functions and\(\hat V^{\left( s \right)} \hat \alpha _j = \left( { - 1} \right)^{\left( s \right)} \hat \alpha _j \hat V^{\left( s \right)} \) for all anticommuting Hermitian matrices\(\hat \alpha _j ,\hat \alpha _j^2 = \hat I,s = 0,1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Sh. Birman and T. A. Suslina, “The periodic Dirac operator is absolutely continuous,” Preprint ESI No. 603, Erwin Schrödinger Intl. Inst. for Math. Phys., Wien (1998).

    Google Scholar 

  2. M. Sh. Birman and T. A. Suslina,St. Petersburg Math. J.,9, No. 1, 21–32 (1998).

    MathSciNet  Google Scholar 

  3. M. Sh. Birman and T. A. Suslina,Alg. Anal.,10, No. 4, 1–36 (1998).

    MathSciNet  Google Scholar 

  4. L. I. Danilov,Theor. Math. Phys.,118, 1–11 (1999).

    MathSciNet  Google Scholar 

  5. L. I. Danilov, “The spectrum of the Dirac operator with periodic potential: III [in Russian],” Deposited in VINITI 10 July 1992, No. 2252-B92, VINITI, Moscow (1992).

    Google Scholar 

  6. A. Sobolev, “Absolute continuity of the periodic magnetic Schrödinger operator,” Preprint ESI No. 495, Erwin Schrödinger Intl. Inst. for Math. Phys., Wien (1997).

    Google Scholar 

  7. M. Sh. Birman and T. A. Suslina,St. Petersburg Math. J.,11, No. 2, 203–232 (2000).

    MathSciNet  Google Scholar 

  8. L. I. Danilov,Theor. Math. Phys.,85, 1039–1048 (1990).

    Article  MathSciNet  Google Scholar 

  9. L. I. Danilov,Theor. Math. Phys.,103, 349–365 (1995).

    Article  MathSciNet  Google Scholar 

  10. L. I. Danilov, “The spectrum of the Dirac operator with periodic potential: VI [in Russian],” Deposited in VINITI 31 Dec. 1996, No. 3855-B96, VINITI, Moscow (1996).

    Google Scholar 

  11. I. M. Gelfand,Dokl. Akad. Nauk SSSR,73, No. 6, 1117–1120 (1950).

    Google Scholar 

  12. L. E. Thomas,Commun. Math. Phys.,33, 335–343 (1973).

    Article  ADS  Google Scholar 

  13. M. Reed and B. Simon,Methods of Modern Mathematical Physics, Vol. 4,Analysis of Operators, Acad. Press, New York (1978).

    Google Scholar 

  14. L. I. Danilov, “The spectrum of the Dirac operator with periodic potential: I [in Russian],” Deposited in VINITI 12 Dec. 1991, No. 4588-B91, VINITI, Moscow (1991).

    Google Scholar 

  15. L. I. Danilov, “A property of the integer lattice inR 3 and the spectrum of the Dirac operator with periodic potential [in Russian],” Preprint, Phys.-Tech. Inst., Urals Div. USSR Acad. Sci., Sverdlovsk (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 124, No. 1, pp. 3–17, July, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danilov, L.I. Spectrum of the periodic Dirac operator. Theor Math Phys 124, 859–871 (2000). https://doi.org/10.1007/BF02551063

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02551063

Keywords

Navigation