Skip to main content
Log in

Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen

  • Published:
Commentarii Mathematici Helvetici

Summary

Let a reductive groupG act linearly on a vectorspaceV, and letOV be an orbit. For each irreducible representation ω ofG, the multiplicity with which ω occurs in the ring of regular functions onO (or on its closureŌ) provides an interesting numerical invariant ofO. We introduce an algebraic notion of a “deformation” of an orbit into another one. The main goal of this paper is to give sufficient conditions on an orbit, in order that an arbitrary deformation of this orbit has to preserve all the multiplicites mentioned above.

In the special case whereG=PSL n acts on its Lie-algebra in the usual way, every (nonzero) nilpotent orbit may be deformed into a semisimple orbit, and a conjecture of Dixmier amounts to saying that these deformations should preserve multiplicities. We prove this conjecture to be true in the case where the closure of the niloptent orbit is a normal variety.

In development of an idea of Dixmier [6], we also introduce a notion of “sheets” ofV (maximal irreducible subsets consisting of orbits of a fixed dimension), and we give a useful description (5.4) for all sheets of a semi-simple Lie-algebra.

This paper is strongly influenced by some investigations of B. Kostant [10] on similar problems and extends some of his results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literaturverzeichnis

  1. Borho W.,Definition einer Dixmier-Abbildung für sl(n, ℂ: Inv. math.40, 143–169 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  2. Borho W. undJantzen J.C.,Über primitive Ideale in Einhüllenden halbeinfacher Lie-Algebren; Inv. math.39, 1–53 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  3. Borho W. undKraft H. Über die Gelfand-Kirillov Dimension, Math. Ann.220, 1–24 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  4. Demazure M. undGabriel P.,Groupes algébriques; North-Holland, Amsterdam 1970.

    MATH  Google Scholar 

  5. Dieudonné J. undGrothendieck A.,Eléments de géométrie algébrique III, IV; Publ. Math. IHESn 0 11, 17, 20, 24, 28, 32.

  6. Dixmier J.,Polarisations dans les algébres de Lie semi-simples complexes; Bull. Sci. Math.99, 45–63 (1975).

    MathSciNet  MATH  Google Scholar 

  7. Hesselink W.,The normality of closures of orbits in a Lie algebra; Comment. Math. Helv.54, (1979).

  8. Humphreys J. E.,Linear algebraic groups, Springer GT, New York-Heidelberg-Berlin 1976.

    Google Scholar 

  9. Johnston D. S. undRichardson R. W.,Conjugacy classes in parabolic subgroups of semisimple algebraic groups II; preprint Durham 1976.

  10. Kostant B.,Lie group representations on polynomial rings; Amer. J. Math.85, 327–404 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  11. Kraft H.,Parametrisierung der Konjugationsklassen in sln; Math. Ann.234, 209–220 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  12. Mumford D.,Geometric Invarient Theory; Ergebnisse der Math.34, Springer, Berlin 1965.

    Book  Google Scholar 

  13. Richardson R. W.,Principal Orbit Types for Algebraic Transformation Spaces in Characteristic Zero; Inv. math.16, 6–14 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  14. Springer T. A. undSteinberg R.,Conjugacy Classes; in “Seminar on algebraic groups and related finite groups”, Springer LN131, (1970).

  15. Steinberg R.,Conjugacy Classes in Algebraic Groups; Springer LN366 (1974).

  16. Vinberg E. B. undPopov V. L.,On a class of quasihomogeneus affine varieties; Math. USSR Izvestija.6 (1972),n 0 4.

  17. Borho W.,Recent advances in enveloping algebras of semisimple Lie algebras; Sém. Bourbaki n 0 489 (1976).

  18. Esnault H.,Singularités rationelles et groupes algébriques; Thèse de troisième cycle, Paris VII (1976).

  19. Ozeki H. undWakimoto M.,On polarisations of certain homogeneous spaces; Hiroshima Math. J.2, 445–482 (1972).

    MathSciNet  MATH  Google Scholar 

  20. Matsushima Y.,Espaces homogènes de Stein des groupes de Lie complexes; Nagoya Math. J.16, 205–218 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  21. Bialynicki-Birula A.,On homogeneous affine spaces of linear algebraic groups; Amer. J. Math.85, 577–582 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  22. Richardson R. W.,Deformations of Lie Subgroups and the Variation of Isotropy Subgroups; Acta math.129, 35–73 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  23. Grauert H., undRiemenschneider O.,Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen; Inv. math.11 263–292 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  24. Kempf G., Knudson F., Mumford D. undSaint-Donat B.,Toroidal Embeddings I; Springer LN339 (1973).

  25. Hartshorne R. undOgus A., On the factoriality of local rings of small embedding codimension; Communications in A.1 415–437 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  26. Luna D.,Slices étales; Bull. Soc. math. France, Mémoire33, 81–105 (1973).

    MATH  Google Scholar 

  27. Luna D., Adhérences d'orbite et invariants; Inv. math.29, 231–238 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  28. Slodowy P., Einfache Singularitäten und einfache algebraische Gruppen; Regensburger Mathematische Schriften2, (1978).

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borho, W., Kraft, H. Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen. Commentarii Mathematici Helvetici 54, 61–104 (1979). https://doi.org/10.1007/BF02566256

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02566256

Navigation