Skip to main content
Log in

Rigidity and sphere theorem for manifolds with positive Ricci curvature

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

LetM be a complete Riemannian manifold with Ricci curvature having a positive lower bound. In this paper, we prove some rigidity theorems forM by the existence of a nice minimal hypersurface and a sphere theorem aboutM. We also generalize a Myers theorem stating that there is no closed immersed minimal submanifolds in an open hemisphere to the case that the ambient space is a complete Riemannian manifold withk-th Ricci curvature having a positive lower bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brown, M.: A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc.66, 74–76 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cheeger, J and Ebin, D.: Comparison theorems in Riemannian geometry, North-Holland: Amsterdam 1975

    MATH  Google Scholar 

  3. Cheng, S. Y.: Eigenvalue comparison theorems and its geometric applications, Math. Z.143, 289–297 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  4. Choi, H. I. and Schoen, R.: The space of minimal embeddings of a surface into a three-dimensional manifold of positive Ricci curvature, Invent. Math.81, 387–394 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. Coghlan, L. and Itokawa, Y.: A sphere theorem for reverse volume pinching on even-dimensional manifolds, Proc. Amer. Math. Soc.111, 815–819 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Frankel, T.: On the fundamental group of a compact minimal submanifold, Ann. Math.83, 68–73 (1966)

    Article  MathSciNet  Google Scholar 

  7. Gromov, G.: Groups of polynomial growth and expanding maps, Inst. Hautes Etudes Sci. Pub. Math.53, 183–215 (1981)

    Google Scholar 

  8. Grove, K. and Petersen, V. P.: Manifolds near the boundary of existence, J. Differential Geometry33, 379–394 (1991)

    MATH  MathSciNet  Google Scholar 

  9. Hadamard, J.: Sur certaines propretes des trajectories en Dynamique, J. Math. Pures Appl.5, 331–387 (1897)

    Google Scholar 

  10. Hartman, P.: Oscillation criteria for self-adjoint second-order differential systems and “principal sectional curvature”, J. Differential Equations34, 326–338 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  11. Klingenberg, W.: Riemannian Geometry, Berlin, New York: de Gruyter 1982

    MATH  Google Scholar 

  12. Myers, S. B.: Curvature of closed hypersurfaces and non-existence of closed minimal hypersurfaces, Trans. Amer. Math. Soc.71, 211–217 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  13. Peters, S.: Convergence of Riemannian manifolds, Compositio Math.62, 3–16 (1987)

    MATH  MathSciNet  Google Scholar 

  14. Reilly, R.: Applications of the Hessian operator in a Riemannian manifold, Indiana Univ. Math. J.26, 459–472 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  15. Toponogov, V. A.: Computation of the length of a closed geodesic on a convex surface, Dokl. Akad. Nauk SSSR124, 282–284 (1959)

    MATH  MathSciNet  Google Scholar 

  16. Wu, J. Y.: Hausdorff convergence and sphere theorems, Proc. Sym. Pure Math.54, 685–692 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the JSPS postdoctoral fellowship and NSF of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, C. Rigidity and sphere theorem for manifolds with positive Ricci curvature. Manuscripta Math 85, 79–87 (1994). https://doi.org/10.1007/BF02568185

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02568185

1991 Mathematics Subject Classification

Navigation