Skip to main content
Log in

Linear degeneracy and shock waves

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Arnold, V.I.: Ordinary differential equations. Cambridge London: The MIT Press 1973

    MATH  Google Scholar 

  2. Freistühler, H.: Thesis, Ruhr-Universität Bochum 1987

  3. Freistühler, H.: Instability of vanishing viscosity approximation for hyperbolic systems of conservation laws with rotational invariance. J. Differ. Equations87, 205–226 (1990)

    Article  MATH  Google Scholar 

  4. Freistühler, H.: Shocks associated with rotational modes. IMA Vol. Math. Appl.33, 68–69 (1991)

    Google Scholar 

  5. Freistühler, H.: On compact linear degeneracy. IMA preprint #551. University of Minnesota 1989

  6. Hirsch, M.W., Pugh, C.C., Shub, M.: Invariant manifolds. (Lect. Notes Math., vol. 583) Berlin Heidelberg New York: Springer 1977

    MATH  Google Scholar 

  7. Kato, T.: Perturbation theory for linear operators. Berlin Heidelberg New York Tokio: Springer 1984

    MATH  Google Scholar 

  8. Lax, P.: Hyperbolic systems of conservations laws II. Commun. Pure Appl. Math.10, 537–566 (1957)

    MATH  MathSciNet  Google Scholar 

  9. Majda, A., Pego, R.: Stable viscosity matrices for systems of conservation laws. J. Differ. Equations56, 229–262 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  10. Schutz, B.F.: Geometrical methods of mathematical physics. Cambridge: Cambridge University Press 1980

    MATH  Google Scholar 

  11. Brio, M.: Propagation of weakly nonlinear magnetoacoustic waves. Wave Motion9, 455–458 (1987)

    Article  MATH  Google Scholar 

  12. Cabannes, H.: Theoretical magnetofluiddynamics. New York: Academic Press 1970

    Google Scholar 

  13. Conley, C., Smoller, J.: On the structure of magnetohydrodynamic shock waves II. J. Math. Pures Appl.54, 429–444 (1975)

    MathSciNet  Google Scholar 

  14. Freistühler, H.: Some remarks on the structure of intermediate magnetohydrodynamic shocks. J. Geophys. Res.95, 3825–3827 (1991)

    Article  Google Scholar 

  15. Germain, P.: Contribution à la théorie des ondes de choc en magnétodynamique des fluides. Off. Nat. Etud. Aéronaut., Publ.97 (1959)

  16. Gilbarg, D.: The existence and limit behavior of the one-dimensional shock layer. Am. J. Math.73, 256–274 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hesaraaki, M.: The structure of magnetohydrodynamic shockwaves. Mem. Am. Math. Soc.302 (1984)

  18. Kulikovskii, A., Liubimov, G.: Magnetohydrodynamics. Reading Addison-Wesley 1965

    Google Scholar 

  19. Mischaikow, K., Hattori, H.: On the existence of intermediate magnetohydrodynamic shock waves. J. Dyn. Differ. Equations2, 163–175 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wu, C.C.: On MHD intermediate shocks. Geophys. Res. Lett.14, 668–671 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freistühler, H. Linear degeneracy and shock waves. Math Z 207, 583–596 (1991). https://doi.org/10.1007/BF02571409

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02571409

Keywords

Navigation