Skip to main content
Log in

Representation theory of the vertex algebraW 1+∞

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

In our paper [KR] we began a systematic study of representations of the universal central extension of the Lie algebra of differential operators on the circle. This study was continued in the paper [FKRW] in the framework of vertex algebra theory. It was shown that the associated to simple vertex algebraW 1+∞,N with positive integral central chargeN is isomorphic to the classical vertex algebraW(gl N), which led to a classification of modules overW 1+∞,N . In the present paper we study the remaing nontrivial case, that of a negative central charge-N. The basic tool is the decomposition ofN pairs of free charged bosons with respect togl N and the commuting withgl N Lie algebra of infinite matricesĝl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • [AFMO] H. Awata, M. Fukuma, Y. Matsuo, and S. Odake,Character and determinant formulae of quasifinite representations of the W 1+∞ algebra, preprint, RIMS-982 (1994).

  • [ABMNV] L. Alvarez-Gaumé, J.B. Bost, G. Moore, P. Nelson, and C. Vafa,Bosonization in arbitrary genus, Phys. Lett. B178 (1986), 41–45.

    Article  MathSciNet  Google Scholar 

  • [ASM] M. Adler, T. Shiota, and P. van Moerbeke,From the w algebra to its central extension: A τ-function approach, preprint.

  • [BMP] P. Bouwknegt, J. McCarthy, and K. Pilch,Semi-infinite cohomology and w-gravity, hep-th 9302086.

  • [B1] R. Borcherds,Vertex algebras, Kač-Moody algebras, and the Monster, Proc. Natl. Acad. Sci. USA83 (1986) 3068–3071.

    Article  MathSciNet  Google Scholar 

  • R. Borcherds,Monstrous moonshine and monstrous Lie superalgebras, Invent. Math.109 (1992), 405–444.

    Article  MATH  MathSciNet  Google Scholar 

  • [CTZ1] A. Capelli, C.A. Trugenberger, and G.R. Zemba,Classifications of quantum Hall universality classes by W 1+∞ symmetry, Phys. Rev. Let.72 (1994), 1902–1905.

    Article  Google Scholar 

  • [CTZ2] A. Capelli, C.A. Trugenberger, and G.R. Zemba,Stable hierarchical quantum Hall fluids as W 1+∞ minimal models, preprint, UGVA-DPT 1995/01-879.

  • [D] J. Dixmier,Algèbres enveloppantes, Gauthier-Villars, Paris, 1974.

    MATH  Google Scholar 

  • [F] B.L. Feigin,The Lie algebra gl(ϕ) and the cohomology of the Lie algebra of differential operators, Uspechi Math. Nauk35, no. 2 (1988), 157–158.

    MathSciNet  Google Scholar 

  • [FKRW] E. Frenkel, V. Kac, A. Radul, and W. Wang,W 1+∞ and W(glN) with central charge N, Comm. Math. Phys.170 (1995), 337–357.

    Article  MATH  MathSciNet  Google Scholar 

  • [FLM] I.B. Frenkel, J. Lepowsky, and A. Meurman,Vertex Operator Algebras and the Monster, Academic Press, New York, 1988.

    MATH  Google Scholar 

  • [G] P. Goddard,Meromorphic conformal field theory, in Infinite-dimensional Lie algebras and groups (V. Kac, ed.) Adv. Ser. in Math. Phys7 (1989), World Scientific, 556–587.

  • R. Howe,Dual pairs in physics: harmonic oscillators, photons, electrons, and singletons, Lectures in Appl. Math., vol. 21, 1985, pp. 179–206.

    MathSciNet  Google Scholar 

  • [H2] R. Howe,Remarks on classical invariant theory, Trans. AMS313 (1989), 539–570.

    Article  MATH  MathSciNet  Google Scholar 

  • [K1] V.G. Kac,Infinite-Dimensional Lie Algebras, third edition, Cambridge University Press, 1990.

  • [K2] V.G. Kac,Vertex algebras preprint.

  • [KP] V.G. Kac and D.H. Peterson,Spin and wedge representations of infinite-dimensional Lie algebras and groups, Proc. Natl. Acad. Sci. USA78 (1981), 3308–3312.

    Article  MATH  MathSciNet  Google Scholar 

  • [KR] V.G. Kac and A. Radul,Quasi-finite highest weight modules over the Lie algebra of differential operators on the circle, Comm. Math. Phys.157 (1993), 429–457.

    Article  MATH  MathSciNet  Google Scholar 

  • [KV] M. Kashiwara and M. Vergne,On the Segal-Shale-Weil representations and harmonic polynomials, Invent. Math.44 (1978), 1–47.

    Article  MATH  MathSciNet  Google Scholar 

  • [L] S. Lang,Algebra, Addison-Wesley Publ. Co., Reading, MA, 1965.

    MATH  Google Scholar 

  • [Li] H. Li,2-cocycles on the algebra of differential operators, J. Algebra122 (1989), 64–80.

    Article  MATH  MathSciNet  Google Scholar 

  • [M] I. Macdonald,Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford, 1979.

    MATH  Google Scholar 

  • [Mat] Y. Matsuo,Free fields and quasi-finite representations of W 1∞, Phys. Lett. B.326 (1994), 95–100.

    Article  MATH  MathSciNet  Google Scholar 

  • [O] G.I. Olshanskii,Description of the representations of U(p,q) with highest weight, Funct. Anal. Appl14 (1980), 32–44.

    MathSciNet  Google Scholar 

  • [PV] V.L. Popov and E.B. Vinberg,Invariant Theory, Encyclopaedia of Math. Sci.: Algebraic Geometry IV, vol. 55, Springer-Verlag, Berlin, Heidelberg, and New-York, 1994, pp. 123–284.

    Google Scholar 

  • [Z] D.P. Zhelobenko,Compact Lie groups and their representations, Nauka, Moscow, 1970.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To Alexander Alexandrovich Kirillov on his 60-th birthday

Supported in part by NSF grant DMS-9103792.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kac, V., Radul, A. Representation theory of the vertex algebraW 1+∞ . Transformation Groups 1, 41–70 (1996). https://doi.org/10.1007/BF02587735

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02587735

Keywords

Navigation